SpringBoot 整合 Redis? 看这一篇就够了

SpringBoot 整合 Redis? 看这一篇就够了


前言

今天来学习一下SpringBoot整合Redis,其中的Topic已经放上文章目录


一、什么是Redis

Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。 它支持多种类型的数据结构,如 字符串(strings), 散列(hashes), 列表(lists), 集合(sets), 有序集合(sorted sets) 与范围查询, bitmaps, hyperloglogs 和 地理空间(geospatial) 索引半径查询。 Redis 内置了 复制(replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence), 并通过 Redis哨兵(Sentinel)和自动 分区(Cluster)提供高可用性(high availability)。

二、SpringBoot如何在内部自动配置Redis的

自动配置:
● RedisAutoConfiguration 自动配置类。RedisProperties 属性类 --> spring.redis.xxx是对redis的配置
● 连接工厂是准备好的。LettuceConnectionConfiguration、JedisConnectionConfiguration
默认为Lettuce连接
● 自动注入了RedisTemplate<Object, Object> : xxxTemplate;
● 自动注入了StringRedisTemplate: 用于常用场景中 k:v都是String的情况
● 底层只要我们使用 StringRedisTemplate、RedisTemplate就可以操作redis

三、如何在SpringBoot中整合Redis

1.XML依赖引入

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>

2.YAML配置文件

spring:
  redis:
      host: r-bp1nc7reqesxisgxpipd.redis.rds.aliyuncs.com
      port: 6379
      password: 用户名:密码
      client-type: lettuce

3.Jedis和Lettuce作为客户端连接的区别

Jedis:采用直连方式,每个线程都要拿自己创建的Jedis实例去连接Redis客户端,当有很多个线程的时候,不仅开销大需要反复的创建关闭一个Jedis连接,而且也是线程不安全的——BIO模式

Lettuce:采用Netty,只创建一个Lettuce连接,使所有的线程共享这一个Lettuce连接,这样可以减少创建关闭一个Lettuce连接时候的开销;而且这种方式也是线程安全的——NIO模式

4.配置Jedis的方法

    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
    </dependency>
spring:
  redis:
      host: r-bp1nc7reqesxisgxpipd.redis.rds.aliyuncs.com
      port: 6379
      password: lfy:Lfy123456
      client-type: jedis
      jedis:
        pool:
          max-active: 10

四、redisTemplate源码解析

@Bean
@ConditionalOnMissingBean(
    name = {"redisTemplate"}
)
@ConditionalOnSingleCandidate(RedisConnectionFactory.class)
//只在单例时运行
public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
    //默认的RedisTemplate没有过多的设置,Redis对象都需要进行序列化
    //两个泛型都是Object,使用时需要强转
    RedisTemplate<Object, Object> template = new RedisTemplate();
    template.setConnectionFactory(redisConnectionFactory);
    return template;
}

//为使用频率最高的String类型生产的Bean
@Bean
@ConditionalOnMissingBean
@ConditionalOnSingleCandidate(RedisConnectionFactory.class)
public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory redisConnectionFactory) {
    return new StringRedisTemplate(redisConnectionFactory);
}

五、使用redisTemplate对Redis进行操作

//切换数据库
LettuceConnectionFactory redisConnectionFactory = (LettuceConnectionFactory)redisTemplate.getConnectionFactory();
redisConnectionFactory.setDatabase(1);

RedisConnection connection = redisTemplate.getConnectionFactory().getConnection();
connection.flushDb();
connection.flushAll();

//set
UserEntity userEntity=new UserEntity();
userEntity.setPwd("1111111");
redisTemplate.opsForValue().set("m0",userEntity);
UserEntity userEntity1= (UserEntity) redisTemplate.opsForValue().get("m0");
System.out.println(userEntity1.getPwd());

//不存在m 则新增m 返回true  ,存在m 不操作 返回false
Boolean aBoolean = redisTemplate.opsForValue().setIfAbsent("m", "k", 60, TimeUnit.SECONDS);
System.out.println(aBoolean+"    :   "+redisTemplate.opsForValue().get("m"));


//加入map
redisTemplate.opsForHash().put("m1","k1","v1");
redisTemplate.opsForHash().put("m1","k2","v2");
System.out.println(redisTemplate.opsForHash().entries("v"));

HashMap<String,Object> map=new HashMap<>();
map.put("k3","v3");
map.put("k4","v4");
redisTemplate.opsForHash().putAll("m2",map);
System.out.println(redisTemplate.opsForHash().entries("m2"));

//hashset
redisTemplate.opsForSet().add("m3","1","2","3","3");
System.out.println(redisTemplate.opsForSet().members("m3"));

//list
redisTemplate.opsForList().leftPush("m4","a");
redisTemplate.opsForList().leftPush("m4","b");
redisTemplate.opsForList().leftPush("m4","c");
redisTemplate.opsForList().leftPush("m4","d");
redisTemplate.opsForList().leftPush("m4","e");
System.out.println(redisTemplate.opsForList().range("m4",0,-1));

六、redisTemplate中的序列化

序列化最终的目的是为了对象可以跨平台存储,和进行网络传输。

1.JdkSerializationRedisSerializer(默认)

优点是反序列化时不需要提供类型信息(class),

缺点是需要实现Serializable接口,还有序列化后的结果非常庞大,是JSON格式的5倍左右,这样就会消耗redis服务器的大量内存。

2.Jackson2JsonRedisSerializer

优点是速度快,序列化后的字符串短小精悍,不需要实现Serializable接口。

缺点也非常致命,那就是此类的构造函数中有一个类型参数,必须提供要序列化对象的类型信息(.class对象)。

3.如何配置Jackson2JsonRedisSerializer

//通过自定义RedisTemplate
@Bean
@SuppressWarnings("all")
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
    RedisTemplate<String, Object> template = new RedisTemplate<>();
    template.setConnectionFactory(redisConnectionFactory);

    Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
    ObjectMapper om = new ObjectMapper();
    om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
    om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
    om.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
    jackson2JsonRedisSerializer.setObjectMapper(om);

    StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
    // key采用String的序列化方式
    template.setKeySerializer(stringRedisSerializer);
    // hash的key也采用String的序列化方式
    template.setHashKeySerializer(stringRedisSerializer);
    // value序列化方式采用jackson
    template.setValueSerializer(jackson2JsonRedisSerializer);
    // hash的value序列化方式采用jackson
    template.setHashValueSerializer(jackson2JsonRedisSerializer);
    template.afterPropertiesSet();
    return template;
}

七、RedisUtils中的方法源码

@Component
public class RedisUtil {
    
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
    
    // =============================common============================
    /**
     * 指定缓存失效时间
     * @param key 键
     * @param time 时间(秒)
     * @return
     */
    public boolean expire(String key, long time) {
        try {
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 根据key 获取过期时间
     * @param key 键 不能为null
     * @return 时间(秒) 返回0代表为永久有效
     */
    public long getExpire(String key) {
        return redisTemplate.getExpire(key, TimeUnit.SECONDS);
    }
    /**
     * 判断key是否存在
     * @param key 键
     * @return true 存在 false不存在
     */
    public boolean hasKey(String key) {
        try {
            return redisTemplate.hasKey(key);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 删除缓存
     * @param key 可以传一个值 或多个
     */
    @SuppressWarnings("unchecked")
    public void del(String... key) {
        if (key != null && key.length > 0) {
            if (key.length == 1) {
                redisTemplate.delete(key[0]);
            } else {
                redisTemplate.delete(CollectionUtils.arrayToList(key));
            }
        }
    }
    // ============================String=============================
    /**
     * 普通缓存获取
     * @param key 键
     * @return 值
     */
    public Object get(String key) {
        return key == null ? null : redisTemplate.opsForValue().get(key);
    }
    /**
     * 普通缓存放入
     * @param key 键
     * @param value 值
     * @return true成功 false失败
     */
    public boolean set(String key, Object value) {
        try {
            redisTemplate.opsForValue().set(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 普通缓存放入并设置时间
     * @param key 键
     * @param value 值
     * @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期
     * @return true成功 false 失败
     */
    public boolean set(String key, Object value, long time) {
        try {
            if (time > 0) {
                redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
            } else {
                set(key, value);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 递增
     * @param key 键
     * @param delta 要增加几(大于0)
     * @return
     */
    public long incr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递增因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, delta);
    }
    /**
     * 递减
     * @param key 键
     * @param delta 要减少几(小于0)
     * @return
     */
    public long decr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递减因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, -delta);
    }
    // ================================Map=================================
    /**
     * HashGet
     * @param key 键 不能为null
     * @param item 项 不能为null
     * @return 值
     */
    public Object hget(String key, String item) {
        return redisTemplate.opsForHash().get(key, item);
    }
    /**
     * 获取hashKey对应的所有键值
     * @param key 键
     * @return 对应的多个键值
     */
    public Map<Object, Object> hmget(String key) {
        return redisTemplate.opsForHash().entries(key);
    }
    /**
     * HashSet
     * @param key 键
     * @param map 对应多个键值
     * @return true 成功 false 失败
     */
    public boolean hmset(String key, Map<String, Object> map) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * HashSet 并设置时间
     * @param key 键
     * @param map 对应多个键值
     * @param time 时间(秒)
     * @return true成功 false失败
     */
    public boolean hmset(String key, Map<String, Object> map, long time) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 向一张hash表中放入数据,如果不存在将创建
     * @param key 键
     * @param item 项
     * @param value 值
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 向一张hash表中放入数据,如果不存在将创建
     * @param key 键
     * @param item 项
     * @param value 值
     * @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value, long time) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 删除hash表中的值
     * @param key 键 不能为null
     * @param item 项 可以使多个 不能为null
     */
    public void hdel(String key, Object... item) {
        redisTemplate.opsForHash().delete(key, item);
    }
    /**
     * 判断hash表中是否有该项的值
     * @param key 键 不能为null
     * @param item 项 不能为null
     * @return true 存在 false不存在
     */
    public boolean hHasKey(String key, String item) {
        return redisTemplate.opsForHash().hasKey(key, item);
    }
    /**
     * hash递增 如果不存在,就会创建一个 并把新增后的值返回
     * @param key 键
     * @param item 项
     * @param by 要增加几(大于0)
     * @return
     */
    public double hincr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, by);
    }
    /**
     * hash递减
     * @param key 键
     * @param item 项
     * @param by 要减少记(小于0)
     * @return
     */
    public double hdecr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, -by);
    }
    // ============================set=============================
    /**
     * 根据key获取Set中的所有值
     * @param key 键
     * @return
     */
    public Set<Object> sGet(String key) {
        try {
            return redisTemplate.opsForSet().members(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 根据value从一个set中查询,是否存在
     * @param key 键
     * @param value 值
     * @return true 存在 false不存在
     */
    public boolean sHasKey(String key, Object value) {
        try {
            return redisTemplate.opsForSet().isMember(key, value);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将数据放入set缓存
     * @param key 键
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSet(String key, Object... values) {
        try {
            return redisTemplate.opsForSet().add(key, values);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 将set数据放入缓存
     * @param key 键
     * @param time 时间(秒)
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSetAndTime(String key, long time, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().add(key, values);
            if (time > 0) {
                expire(key, time);
            }
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 获取set缓存的长度
     * @param key 键
     * @return
     */
    public long sGetSetSize(String key) {
        try {
            return redisTemplate.opsForSet().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 移除值为value的
     * @param key 键
     * @param values 值 可以是多个
     * @return 移除的个数
     */
    public long setRemove(String key, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().remove(key, values);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    // ===============================list=================================
    /**
     * 获取list缓存的内容
     * @param key 键
     * @param start 开始
     * @param end 结束 0 到 -1代表所有值
     * @return
     */
    public List<Object> lGet(String key, long start, long end) {
        try {
            return redisTemplate.opsForList().range(key, start, end);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 获取list缓存的长度
     * @param key 键
     * @return
     */
    public long lGetListSize(String key) {
        try {
            return redisTemplate.opsForList().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 通过索引 获取list中的值
     * @param key 键
     * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
     * @return
     */
    public Object lGetIndex(String key, long index) {
        try {
            return redisTemplate.opsForList().index(key, index);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 将list放入缓存
     * @param key 键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, Object value) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     * @param key 键
     * @param value 值
     * @param time 时间(秒)
     * @return
     */
    public boolean lSet(String key, Object value, long time) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     * @param key 键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, List<Object> value) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     *
     * @param key 键
     * @param value 值
     * @param time 时间(秒)
     * @return
     */
    public boolean lSet(String key, List<Object> value, long time) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 根据索引修改list中的某条数据
     * @param key 键
     * @param index 索引
     * @param value 值
     * @return
     */
    public boolean lUpdateIndex(String key, long index, Object value) {
        try {
            redisTemplate.opsForList().set(key, index, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 移除N个值为value
     * @param key 键
     * @param count 移除多少个
     * @param value 值
     * @return 移除的个数
     */
    public long lRemove(String key, long count, Object value) {
        try {
            Long remove = redisTemplate.opsForList().remove(key, count, value);
            return remove;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
}

八、RedisConf中参数简介(内容有点多)

# 当配置中需要配置内存大小时,可以使用 1k, 5GB, 4M 等类似的格式,其转换方式如下(不区分大小写)
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# 内存配置大小写是一样的.比如 1gb 1Gb 1GB 1gB

#绑定IP
bind 127.0.0.0

#保护模式
protected-mode yes
 
# 【重要】daemonize no 默认情况下,redis不是在后台运行的,如果需要在后台运行,把该项的值更改为yes
daemonize yes 
 
# 当redis在后台运行的时候,Redis默认会把pid文件放在/var/run/redis.pid,你可以配置到其他地址。
# 当运行多个redis服务时,需要指定不同的pid文件和端口
pidfile /var/run/redis.pid
 
# 【重要】指定redis运行的端口,默认是6379 
port 6379
 
# 指定redis只接收来自于该IP地址的请求,如果不进行设置,那么将处理所有请求,
# 在生产环境中最好设置该项
# bind 127.0.0.1
 
# Specify the path for the unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 755
 
# 设置客户端连接时的超时时间,单位为秒。当客户端在这段时间内没有发出任何指令,那么关闭该连接
#【重要】 0是关闭此设置
timeout 0
 
# 指定日志记录级别
# Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
# debug 记录很多信息,用于开发和测试
# varbose 有用的信息,不像debug会记录那么多
# notice 普通的verbose,常用于生产环境
# warning 只有非常重要或者严重的信息会记录到日志
loglevel debug
 
# 配置log文件地址
# 默认值为stdout,标准输出,若后台模式会输出到/dev/null
#logfile stdout
logfile /var/log/redis/redis.log
 
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no
 
# Specify the syslog identity.
# syslog-ident redis
 
# Specify the syslog facility.  Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0
 
# 可用数据库数
# 默认值为16,默认数据库为0,数据库范围在0-(database-1)之间
databases 16
 
################################ 【重要】快照  #################################
#
# 保存数据到磁盘,格式如下:
#
#   save <seconds> <changes>
#
#   指出在多长时间内,有多少次更新操作,就将数据同步到数据文件rdb。
#   相当于条件触发抓取快照,这个可以多个条件配合
#   
#   比如默认配置文件中的设置,就设置了三个条件
#
#   save 900 1  900秒内至少有1个key被改变(那就会在900秒的时候执行rdb同步)
#   save 300 10  300秒内至少有10个key被改10就会在300秒的时候执行rdb同步)
#   save 60 10000  60秒内至少有10000个key被改变 (那就会在60秒的时候执行rdb同步)
 
save 900 1
save 300 10
save 60 10000

# 如果持久化出错,是否还需要继续工作
stop-writes-on-bgsave-error yes
 
# 存储至本地数据库时(持久化到rdb文件)是否压缩数据,默认为yes
rdbcompression yes
 
# 保存rdb文件的时候,进行错误的检查校验
rdbchecksum yes

# rdb文件保存目录
dir ./
 
# RDB后,本地持久化数据库文件名,默认值为dump.rdb(持久化的数据都会保存在这个文件里然后准备刷盘)
dbfilename dump.rdb
 
# 工作目录
#
# 数据库镜像备份的文件放置的路径。
# 这里的路径跟文件名要分开配置是因为redis在进行备份时,先会将当前数据库的状态写入到一个临时文件中,等备份完成时,
# 再把该该临时文件替换为上面所指定的文件,而这里的临时文件和上面所配置的备份文件都会放在这个指定的路径当中。
#
# AOF文件也会存放在这个目录下面
#
# 注意这里必须制定一个目录而不是文件
dir ./
 
################################# 【重要】主从复制 #################################
 
# 主从复制. 设置该数据库为其他数据库的从数据库.
# 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
# 这里永久性的设置主机IP(设置后自己视为奴隶)
# slaveof <masterip> <masterport>
 
# 当master服务设置了密码保护时(用requirepass制定的密码)
# slav服务连接master的密码
#
# masterauth <master-password>
 
 
# 当从库同主机失去连接或者复制正在进行,从机库有两种运行方式:
#
# 1) 如果slave-serve-stale-data设置为yes(默认设置),从库会继续相应客户端的请求
#
# 2) 如果slave-serve-stale-data是指为no,出去INFO和SLAVOF命令之外的任何请求都会返回一个
#    错误"SYNC with master in progress"
# [stale/steɪl/ - 陈旧的]
slave-serve-stale-data yes
 
# 从库会按照一个时间间隔向主库发送PINGs.可以通过repl-ping-slave-period设置这个时间间隔,默认是10秒
#
# repl-ping-slave-period 10
# 总结就是上面间隔多少秒发送一次检测存活的pingPong信号,下面就是判定发送这个信号后的返回超时时间 
# repl-timeout 设置主库批量数据传输时间或者ping回复时间间隔,默认值是60秒
# 一定要确保repl-timeout大于repl-ping-slave-period
# repl-timeout 60
 
################################## 安全 ###################################
 
# 设置客户端连接后进行任何其他指定前需要使用的密码。
# 警告:因为redis速度相当快,所以在一台比较好的服务器下,一个外部的用户可以在一秒钟进行150K次的密码尝试,这意味着你需要指定非常非常强大的密码来防止暴力破解
#
# requirepass foobared
 
# 命令重命名.
#
# 在一个共享环境下可以重命名相对危险的命令。比如把CONFIG重名为一个不容易猜测的字符。
#
# 举例:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# 如果想删除一个命令,直接把它重命名为一个空字符""即可,如下:
#
# rename-command CONFIG ""
 
################################### 【重要】约束 ####################################
 
# 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,
# 如果设置 maxclients 0,表示不作限制。
# 当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
#
# maxclients 128
 
# 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key
# Redis同时也会移除空的list对象
#
# 当此方法处理后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作
#
# 注意:Redis新的vm机制,会把Key存放内存,Value会存放在swap区
#
# maxmemory的设置比较适合于把redis当作于类似memcached的缓存来使用,而不适合当做一个真实的DB。
# 当把Redis当做一个真实的数据库使用的时候,内存使用将是一个很大的开销
# maxmemory <bytes>
 
# 当内存达到最大值的时候Redis会选择删除哪些数据?有五种方式可供选择
#【重要 —— 面试会问】
# volatile-lru -> 利用LRU算法移除设置过过期时间的key (LRU:最近使用 Least Recently Used )
# allkeys-lru -> 利用LRU算法移除任何key
# volatile-random -> 移除设置过过期时间的随机key
# allkeys->random -> remove a random key, any key
# volatile-ttl -> 移除即将过期的key(minor TTL)
# noeviction -> 不移除任何可以,只是返回一个写错误
#
# 注意:对于上面的策略,如果没有合适的key可以移除,当写的时候Redis会返回一个错误
#
#       写命令包括: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#
# 【重要】默认是:
#
# maxmemory-policy volatile-lru 
 
# LRU 和 minimal TTL 算法都不是精准的算法,但是相对精确的算法(为了节省内存),随意你可以选择样本大小进行检测。
# Redis默认的灰选择3个样本进行检测,你可以通过maxmemory-samples进行设置
#
# maxmemory-samples 3
 
##############################【重要】 AOF ###############################
 
# 默认情况下,redis会在后台异步的把数据库镜像备份到磁盘,但是该备份是非常耗时的,而且备份也不能很频繁,如果发生诸如拉闸限电、拔插头等状况,那么将造成比较大范围的数据丢失。
# 所以redis提供了另外一种更加高效的数据库备份及灾难恢复方式。
# 开启append only模式之后,redis会把所接收到的每一次写操作请求都追加到appendonly.aof文件中,当redis重新启动时,会从该文件恢复出之前的状态。
# 但是这样会造成appendonly.aof文件过大,所以redis还支持了BGREWRITEAOF指令,对appendonly.aof 进行重新整理。
# 你可以同时开启asynchronous dumps 和 AOF
 
appendonly no
 
# AOF文件名称 (默认: "appendonly.aof")
# appendfilename appendonly.aof
 
 
# Redis支持三种同步AOF文件的策略:
#
# no: 不进行同步,系统去操作 . Faster.
# always: always表示每次有写操作都进行同步. Slow, Safest.
# everysec: 表示对写操作进行累积,每秒同步一次. Compromise.
#
# 默认是"everysec",按照速度和安全折中这是最好的。
# 如果想让Redis能更高效的运行,你也可以设置为"no",让操作系统决定什么时候去执行
# 或者相反想让数据更安全你也可以设置为"always"
#
# 如果不确定就用 "everysec".
 
# appendfsync always
appendfsync everysec
# appendfsync no
 
# AOF策略设置为always或者everysec时,后台处理进程(后台保存或者AOF日志重写)会执行大量的I/O操作
# 在某些Linux配置中会阻止过长的fsync()请求。注意现在没有任何修复,即使fsync在另外一个线程进行处理
#
# 为了减缓这个问题,可以设置下面这个参数no-appendfsync-on-rewrite
#
# This means that while another child is saving the durability of Redis is
# the same as "appendfsync none", that in pratical terms means that it is
# possible to lost up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
 
# Automatic rewrite of the append only file.
# AOF 自动重写
# 当AOF文件增长到一定大小的时候Redis能够调用 BGREWRITEAOF 对日志文件进行重写
#
# 它是这样工作的:Redis会记住上次进行些日志后文件的大小(如果从开机以来还没进行过重写,那日子大小在开机的时候确定)
#
# 基础大小会同现在的大小进行比较。如果现在的大小比基础大小大制定的百分比,重写功能将启动
# 同时需要指定一个最小大小用于AOF重写,这个用于阻止即使文件很小但是增长幅度很大也去重写AOF文件的情况
# 设置 percentage 为0就关闭这个特性
 
 
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
 
################################## SLOW LOG ###################################
 
# Redis Slow Log 记录超过特定执行时间的命令。执行时间不包括I/O计算比如连接客户端,返回结果等,只是命令执行时间
#
# 可以通过两个参数设置slow log:一个是告诉Redis执行超过多少时间被记录的参数slowlog-log-slower-than(微妙),
# 另一个是slow log 的长度。当一个新命令被记录的时候最早的命令将被从队列中移除
 
 
# 下面的时间以微妙微单位,因此1000000代表一分钟。
# 注意制定一个负数将关闭慢日志,而设置为0将强制每个命令都会记录
slowlog-log-slower-than 10000
 
 
# 对日志长度没有限制,只是要注意它会消耗内存
# 可以通过 SLOWLOG RESET 回收被慢日志消耗的内存
slowlog-max-len 1024
 
################################ VM ###############################
 
### WARNING! Virtual Memory is deprecated in Redis 2.4
### The use of Virtual Memory is strongly discouraged.
 
# Virtual Memory allows Redis to work with datasets bigger than the actual
# amount of RAM needed to hold the whole dataset in memory.
# In order to do so very used keys are taken in memory while the other keys
# are swapped into a swap file, similarly to what operating systems do
# with memory pages.
#
# To enable VM just set 'vm-enabled' to yes, and set the following three
# VM parameters accordingly to your needs.
 
vm-enabled no
# vm-enabled yes
 
# This is the path of the Redis swap file. As you can guess, swap files
# can't be shared by different Redis instances, so make sure to use a swap
# file for every redis process you are running. Redis will complain if the
# swap file is already in use.
#
# The best kind of storage for the Redis swap file (that's accessed at random)
# is a Solid State Disk (SSD).
#
# *** WARNING *** if you are using a shared hosting the default of putting
# the swap file under /tmp is not secure. Create a dir with access granted
# only to Redis user and configure Redis to create the swap file there.
vm-swap-file /tmp/redis.swap
 
# vm-max-memory configures the VM to use at max the specified amount of
# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
# is, if there is still enough contiguous space in the swap file.
#
# With vm-max-memory 0 the system will swap everything it can. Not a good
# default, just specify the max amount of RAM you can in bytes, but it's
# better to leave some margin. For instance specify an amount of RAM
# that's more or less between 60 and 80% of your free RAM.
vm-max-memory 0
 
# Redis swap files is split into pages. An object can be saved using multiple
# contiguous pages, but pages can't be shared between different objects.
# So if your page is too big, small objects swapped out on disk will waste
# a lot of space. If you page is too small, there is less space in the swap
# file (assuming you configured the same number of total swap file pages).
#
# If you use a lot of small objects, use a page size of 64 or 32 bytes.
# If you use a lot of big objects, use a bigger page size.
# If unsure, use the default :)
vm-page-size 32
 
# Number of total memory pages in the swap file.
# Given that the page table (a bitmap of free/used pages) is taken in memory,
# every 8 pages on disk will consume 1 byte of RAM.
#
# The total swap size is vm-page-size * vm-pages
#
# With the default of 32-bytes memory pages and 134217728 pages Redis will
# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
#
# It's better to use the smallest acceptable value for your application,
# but the default is large in order to work in most conditions.
vm-pages 134217728
 
# Max number of VM I/O threads running at the same time.
# This threads are used to read/write data from/to swap file, since they
# also encode and decode objects from disk to memory or the reverse, a bigger
# number of threads can help with big objects even if they can't help with
# I/O itself as the physical device may not be able to couple with many
# reads/writes operations at the same time.
#
# The special value of 0 turn off threaded I/O and enables the blocking
# Virtual Memory implementation.
vm-max-threads 4
 
############################### ADVANCED CONFIG ###############################
 
# 当hash中包含超过指定元素个数并且最大的元素没有超过临界时,
# hash将以一种特殊的编码方式(大大减少内存使用)来存储,这里可以设置这两个临界值
# Redis Hash对应Value内部实际就是一个HashMap,实际这里会有2种不同实现,
# 这个Hash的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,对应的value redisObject的encoding为zipmap,
# 当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。
hash-max-zipmap-entries 512
hash-max-zipmap-value 64
 
# list数据类型多少节点以下会采用去指针的紧凑存储格式。
# list数据类型节点值大小小于多少字节会采用紧凑存储格式。
list-max-ziplist-entries 512
list-max-ziplist-value 64
 
# set数据类型内部数据如果全部是数值型,且包含多少节点以下会采用紧凑格式存储。
set-max-intset-entries 512
 
# zsort数据类型多少节点以下会采用去指针的紧凑存储格式。
# zsort数据类型节点值大小小于多少字节会采用紧凑存储格式。
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
 
 
# Redis将在每100毫秒时使用1毫秒的CPU时间来对redis的hash表进行重新hash,可以降低内存的使用
#
# 当你的使用场景中,有非常严格的实时性需要,不能够接受Redis时不时的对请求有2毫秒的延迟的话,把这项配置为no。
#
# 如果没有这么严格的实时性要求,可以设置为yes,以便能够尽可能快的释放内存
activerehashing yes
 
################################## INCLUDES ###################################
 
# 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使**加粗样式**用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
 
# include /path/to/local.conf
# include /path/to/other.conf 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值