黑马程序员JavaWeb开发教程(后端部分MySQL) ---笔记分享

目录

一、MySQL

1、MySQL概述

2、数据库设计-DDL

1)数据库操作

2)图形化工具

3)表结构操作-创建

4)表结构操作-数据类型

5)表结构操作-查询&修改&删除

3、数据库操作-DML

1)INSERT

2)UPDATE

3)DELETE​编辑

4、数据库操作-DQL

1)基本查询

2)条件查询

3)分组查询

①、聚合函数

②、分组查询

4)排序查询

5)分页查询

6)案例

5、多表设计

1)一对多

①、一对多关系实现

②、外键约束

2)一对一

3)多对多

6、多表查询

1)内连接

2)外连接

3)子链接

Ⅰ、标量子查询

7、事务

1)介绍&操作

2)四大特性

8、索引

1)介绍

2)结构

3)语法


一、MySQL

1、MySQL概述

什么是数据库?

2、数据库设计-DDL

1)数据库操作

2)图形化工具

3)表结构操作-创建

4)表结构操作-数据类型

UNSIGNED(无符号)

e.g. id int unsigned primary key auto_increament comment  'ID'

5)表结构操作-查询&修改&删除

3、数据库操作-DML

1)INSERT

MySQL提供now()函数可以获得当前时间

2)UPDATE

3)DELETE

4、数据库操作-DQL

1)基本查询

推荐第一种,第二种(*)不直观、影响效率

起别名as可省略,别名中要是有空格等特殊字符需要用引号

2)条件查询

3)分组查询

①、聚合函数

②、分组查询

4)排序查询

5)分页查询

6)案例

5、多表设计

1)一对多

①、一对多关系实现

部门表和员工表,一个部门对应多个员工,此时部门表为父表,员工表为子表

一对多关系实现:在数据库表中多的一方,添加字段,来关联一的一方的主键

②、外键约束

2)一对一

3)多对多

6、多表查询

1)内连接

内连接查询:查询两表或多表中 交集 部分数据。
内连接从语法上可以分为:隐式内连接、显式内连接
隐式内连接语法:
select 字段列表 from 1 , 2 where 条件 ... ;
显式内连接语法:
select 字段列表 from 1 [ inner ] join 2 on 连接条件 ... ;
多表查询时给表起别名:tableA as 别名 1 , tableB as 别名 2 ;
                                        tableA 别名 1 , tableB 别名 2 ;
注意事项:
一旦为表起了别名,就不能再使用表名来指定对应的字段了,此时只能够使用别名来指定字段。

2)外连接

外连接分为两种:左外连接 和 右外连接。
左外连接语法结构:
select 字段列表 from 1 left [ outer ] join 2 on 连接条件 ... ;
左外连接相当于查询表 1( 左表 ) 的所有数据,当然也包含表 1 和表 2 交集部分的数据。
右外连接语法结构:
select 字段列表 from 1 right [ outer ] join 2 on 连接条件 ... ;
右外连接相当于查询表 2( 右表 ) 的所有数据,当然也包含表 1 和表 2 交集部分的数据。
注意事项:
左外连接和右外连接是可以相互替换的,只需要调整连接查询时 SQL 语句中表的先后顺序就可以
了。而我们在日常开发使用时,更偏向于左外连接。

3)子链接

SQL 语句中嵌套 select 语句,称为嵌套查询,又称子查询。
SELECT * FROM t1 WHERE column1 = ( SELECT column1 FROM t2 ... ) ;
子查询外部的语句可以是 insert / update / delete / select 的任何一个,最常见的是 select。
根据子查询结果的不同分为:
1. 标量子查询(子查询结果为单个值 [ 一行一列 ]
2. 列子查询(子查询结果为一列,但可以是多行)
3. 行子查询(子查询结果为一行,但可以是多列)
4. 表子查询(子查询结果为多行多列 [ 相当于子查询结果是一张表 ]
子查询可以书写的位置:
1. where 之后
2. from 之后
3. select 之后
Ⅰ、标量子查询
子查询返回的结果是单个值 ( 数字、字符串、日期等 ) ,最简单的形式,这种子查询称为标量子查询。
常用的操作符: = <> > >= < <=
Ⅱ、列子查询
子查询返回的结果是一列 ( 可以是多行 ) ,这种子查询称为列子查询。
常用的操作符:
操作符
描述
IN
在指定的集合范围之内,多选一
NOT IN
不在指定的集合范围之内

Ⅲ、行子查询
子查询返回的结果是一行 ( 可以是多列 ) ,这种子查询称为行子查询。
常用的操作符: = <> IN NOT IN
案例:查询与 " 韦一笑 " 的入职日期及职位都相同的员工信息
-- 查询 " 韦一笑 " 的入职日期 及 职位
select entrydate , job from tb_emp where name = ' 韦一笑 ' ; # 查询结果:
2007-01-01 , 2
-- 查询与 " 韦一笑 " 的入职日期及职位相同的员工信息
select * from tb_emp where (entrydate,job) = ('2007-01-01',2) ;
-- 合并以上两条 SQL 语句
select * from tb_emp where ( entrydate,job ) = ( select entrydate , job
from tb_emp where name = ' 韦一笑 ' ) ;
Ⅳ、表子查询
子查询返回的结果是多行多列,常作为临时表,这种子查询称为表子查询。
案例:查询入职日期是 "2006-01-01" 之后的员工信息 , 及其部门信息
分解为两步执行:
1. 查询入职日期是 "2006-01-01" 之后的员工信息
2. 基于查询到的员工信息,在查询对应的部门信息
select * from emp where entrydate > '2006-01-01' ;
select e. * , d. * from ( select * from emp where entrydate > '2006-01- 01' ) e left join dept d on e .dept_id = d .id ;

7、事务

1)介绍&操作

使用事务控制删除部门和删除该部门下的员工的操作:
-- 开启事务
start transaction ;
-- 删除学工部
delete from tb_dept where id = 1 ;
-- 删除学工部的员工
delete from tb_emp where dept_id = 1 ;
·上述的这组 SQL 语句,如果如果执行成功,则提交事务
-- 提交事务 ( 成功时执行 )
 commit ;
·上述的这组 SQL 语句,如果如果执行失败,则回滚事务
-- 回滚事务 ( 出错时执行 )
rollback ;

2)四大特性

8、索引

1)介绍

2)结构

MySQL 数据库支持的索引结构有很多,如: Hash 索引、 B+Tree 索引、 Full-Text 索引等。
我们平常所说的索引,如果没有特别指明,都是指 默认 B+Tree 结构组织的索引。
在没有了解 B+Tree 结构前,我们先回顾下之前所学习的树结构:
二叉查找树:左边的子节点比父节点小,右边的子节点比父节点大
当我们向二叉查找树保存数据时,是按照从大到小 ( 或从小到大 ) 的顺序保存的,此时就会形成一
个单向链表,搜索性能会打折扣。
可以选择平衡二叉树或者是红黑树来解决上述问题。(红黑树也是一棵平衡的二叉树)
但是在 Mysql 数据库中并没有使用二叉搜索数或二叉平衡数或红黑树来作为索引的结构。
思考:采用二叉搜索树或者是红黑树来作为索引的结构有什么问题?
说明:如果数据结构是红黑树,那么查询 1000 万条数据,根据计算树的高度大概是 23 左右,这样
确实比之前的方式快了很多,但是如果高并发访问,那么一个用户有可能需要 23 次磁盘 IO ,那么
100 万用户,那么会造成效率极其低下。所以为了减少红黑树的高度,那么就得增加树的宽度,就
是不再像红黑树一样每个节点只能保存一个数据,可以引入另外一种数据结构,一个节点可以保存
多个数据,这样宽度就会增加从而降低树的高度。这种数据结构例如 BTree 就满足。
下面我们来看看 B+Tree( 多路平衡搜索树 ) 结构中如何避免这个问题:
拓展:
非叶子节点都是由 key+ 指针域组成的,一个 key 8 字节,一个指针占 6 字节,而一个节点总共容
量是 16KB ,那么可以计算出一个节点可以存储的元素个数: 16*1024 字节 / (8+6)=1170 个元
素。
当根节点中可以存储 1170 个元素,那么根据每个元素的地址值又会找到下面的子节点,每个子节
点也会存储 1170 个元素,那么第二层即第二次 IO 的时候就会找到数据大概是:
1170*1170=135W 。也就是说 B+Tree 数据结构中只需要经历两次磁盘 IO 就可以找到 135W 条数
据。
对于第二层每个元素有指针,那么会找到第三层,第三层由 key+ 数据组成,假设 key+ 数据总大小
1KB ,而每个节点一共能存储 16KB ,所以一个第三层一个节点大概可以存储 16 个元素 ( 16
记录 ) 。那么结合第二层每个元素通过指针域找到第三层的节点,第二层一共是 135W 个元素,那么
第三层总元素大小就是: 135W*16 结果就是 2000W+ 的元素个数。
结合上述分析 B+Tree 有如下优点:
千万条数据, B+Tree 可以控制在小于等于 3 的高度
所有的数据都存储在叶子节点上,并且底层已经实现了按照索引进行排序,还可以支持范围
查询,叶子节点是一个双向链表,支持从小到大或者从大到小查找

3)语法

黑马程序员JavaWeb开发教程(后端部分Day04-01~Day05-13) ---笔记分享:黑马程序员JavaWeb开发教程(后端部分Day04-01~Day05-13) ---笔记分享-CSDN博客

黑马程序员JavaWeb开发教程(前端部分) ---笔记分享:

黑马程序员JavaWeb开发教程(前端部分) ---笔记分享_黑马前端课程-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值