题目:http://codeforces.com/contest/1101/problem/D
题意:给出一颗节点为n的树,每个节点有数字ai,现在要求找到两个点x,y 并且在满足这条路径上相邻数的gcd>1的情况下dist(x,y)最大。
思路:这是一道明显的树上动态规划问题,首先预处理将每个数的因子存入fac中,定义dp[i][j] 为第x个数因子为i的最大个数,先用dfs处理出来子树下面的结果,但是可能出现一个分支与另一个分支相连为最大值的情况,所以我们在每一个分支都要判断是否能与另一个分支取到最大,然后更新即可
#include<bits/stdc++.h>
#define fi first
#define se second
#define log2(a) log(n)/log(2)
#define show(a) cout<<a<<endl;
#define show2(a,b) cout<<a<<" "<<b<<endl;
#define show3(a,b,c) cout<<a<<" "<<b<<" "<<c<<endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
typedef pair<P, int> LP;
const ll inf = 1e17 + 10;
const int N = 1e6 + 10;
const ll mod = 1e9+7;
const int base=131;
const double pi=acos(-1);
map<string, int>ml;
map<ll,ll> mp;
map<int,int> vi;
priority_queue<P> q;
priority_queue<P> tq;
ll b[N], vis[N], dep[N],num[N], a[N],t, n, m, k,x,y;
int ex, ey, cnt, ans, sum, flag;
ll l[N],r[N],out[N];
vector<int> v[N];
vector<int> fac[N];
string s;
map<int,int> dp[N];
void di(int x)
{
int t=a[x];
for(int i=2;i*i<=t;i++)
{
if(t%i==0)
{
fac[x].push_back(i);
while(t%i==0) t/=i;
}
}
if(t!=1) fac[x].push_back(t);
}
void dfs(int x,int fa)
{
for(int i=0;i<fac[x].size();i++)
dp[x][fac[x][i]]=1;
for(int i=0;i<v[x].size();i++)
{
int to=v[x][i];
if(to==fa) continue;
dfs(to,x);
for(int j=0;j<fac[x].size();j++)
{
int div=fac[x][j];
dp[x][div]=max(dp[x][div],dp[to][div]+1);
ans=max(ans,dp[x][div]);
for(int k=0;k<i;k++)//判断不同分支能否取到最大
{
ans=max(ans,dp[to][div]+dp[v[x][k]][div]+1);
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]>1) ans=1;
di(i);
}
for(int i=1;i<n;i++)
{
cin>>x>>y;
v[x].push_back(y);
v[y].push_back(x);
}
dfs(1,-1);
cout<<ans<<endl;
}