推荐系统选型

本文探讨了推荐系统的选型,包括实时推荐、离线推荐及其适用场景;介绍了基于产品属性、用户画像、协同过滤、关联规则等推荐模式的优缺点;提到了冷启动问题的解决方案——Bandit算法,以及解决推荐系统中马太效应、信息茧房、长短期兴趣挑战的方法。同时,讨论了推荐系统的评估指标和在线实验平台的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用户浏览信息,停留时间,过往记录,关注记录,收藏记录等等
    1.实时推荐比较适用于大用户和大的实时数据量,需要考虑服务器资源,用户和数据之间的比例。    
    
    2.离线推荐需要考虑推荐量的选取。
    
    3.推荐模式
        3.1基于产品属性的推荐:单纯的依赖物品之间的属性相似来构建推荐关系。
            优点:适合大类目推荐,用户自主选择度高。感觉像是物品归类。大批量的推荐。
            缺点:如果用户浏览当前的物品本身就不是用户的菜,甚至是一个非优质信息(当前主体不可控),再基于当前物品进行推荐就是个伪命题。基于这条,即使当前主体是用户的目标,但再推类似主体会造成信息冗余,即当前主体信息已经解决了用户的问题。

        3.2基于画像的推荐:目前比较通用的推荐方法,但是并不是所有用户的行为都足够用来表征其兴趣偏好的,即我们会高估用户的行为集合,从而产生有偏差的画像属性,更甚者,如果用户完全没有行为怎么办呢?其次,通常来说,用户的兴趣爱好是会随时间迁移而改变的,所以,把握用户的兴趣程度以及其变化并不是一个容易的事情,更何况用户实际的选择还会受很多因素影响。
        
        3.3基于协同过滤的推荐:依靠于用户的行为以及其周边用户的协同行为。网上又大量的文章已经属于非常经典和完善的

        3.4基于关联规则的推荐通过一定的逻辑来寻找物品之间的相关关系,相关关系并不是相似关系,并不是严格意义上属性上的相似,单纯只是为了寻找他们之间的关联性。即通过他们历史的搭配售

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值