算法原理
快速排序(Quicksort)是对冒泡排序的一种改进。
快速排序由C. A. R. Hoare在1960年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
排序流程
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
public static void quickSort(int[] array, int left, int right) {
int l = left;
int r = right;
//中轴值,基准
int pivot = array[(l + r) / 2];
int temp = 0;
while (l < r) {
//找到左边比pivot大的值
while (array[l] < pivot) {
l++;
}
//找到右边比pivot小的值
while (array[r] > pivot) {
r--;
}
//pivot左边的所有值全部小于pivot的值,右边全部是大于pivot的值
if (l >= r) {
break;
}
temp = array[l];
array[l] = array[r];
array[r] = temp;
//如果交换完后,如果array[l] = pivot
if (array[l] == pivot) {
r--;
}
if (array[r] == pivot) {
l++;
}
}
//如果l=r,必须l++、r--否则会出现栈溢出
if (l == r) {
l++;
r--;
}
//向左递归
if (left < r) {
quickSort(array, left, r);
}
//向右递归
if (right > l) {
quickSort(array, l, right);
}
}
复杂度
最好:O(nlog2n)。
最坏:O(n^2)。
平均:O(nlog2n)。
空间复杂度:O(log2n)。