问题描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
这题皇后比普通n皇后(如洛谷P1219)多了一种皇后,那就深搜先放一种皇后,再放另一种皇后,这样仅在结束情况上做更改就好了。另外这题不能放棋子的地方仅在深搜继续的条件上加一个就行了(注:还要注意两种棋子不能放到同一位置上)
代码如下:
#include<iostream>
using namespace std;
int g[9][9],l[9]/*标记同列是否有同色棋子*/;
int c[20],/*标记从左下到右上的斜线上是否有同色棋子*/ d[20]/*标记从左上到右下的斜线上是否有同色棋子*/;
int n;
int ans=0;
void dfs(int i,int q)//i为行数,q为棋子颜色标记,白棋标记为2,黑棋标记为3
{
for(int j=1;j<=n;j++)
{
if(l[j]!=q&&g[i][j]==1&&c[i+j]!=q&&d[i-j+n]!=q)
{
int ql=l[j],qc=c[i+j], qd=d[i-j+n];
g[i][j]=q, l[j]=q, c[i+j]=q, d[i-j+n]=q;
if(i<n) dfs(i+1,q);
else
{
if(q==2)dfs(1,3); //白棋放完后开始放黑棋
else ans++;//白黑都放完为一种可行方法
}
g[i][j]=1, l[j]=ql, c[i+j]=qc, d[i-j+n]=qd;
}
}
}
int main()
{
scanf("%d", &n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d", &g[i][j]);
dfs(1,2);//放白棋
printf("%d", ans);
return 0;
}
嗯,对,这样就完了