2n皇后问题 蓝桥杯 基础练习

问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0

这题皇后比普通n皇后(如洛谷P1219)多了一种皇后,那就深搜先放一种皇后,再放另一种皇后,这样仅在结束情况上做更改就好了。另外这题不能放棋子的地方仅在深搜继续的条件上加一个就行了(注:还要注意两种棋子不能放到同一位置上)
代码如下:

#include<iostream>
using namespace std;
int g[9][9],l[9]/*标记同列是否有同色棋子*/;
int c[20],/*标记从左下到右上的斜线上是否有同色棋子*/ d[20]/*标记从左上到右下的斜线上是否有同色棋子*/;
int n;
int ans=0;
void dfs(int i,int q)//i为行数,q为棋子颜色标记,白棋标记为2,黑棋标记为3
{
    for(int j=1;j<=n;j++)
    {
        if(l[j]!=q&&g[i][j]==1&&c[i+j]!=q&&d[i-j+n]!=q)
        {
           
                int ql=l[j],qc=c[i+j], qd=d[i-j+n];
                g[i][j]=q, l[j]=q, c[i+j]=q, d[i-j+n]=q;
                if(i<n) dfs(i+1,q);
                else
                {
                    if(q==2)dfs(1,3); //白棋放完后开始放黑棋
                    else ans++;//白黑都放完为一种可行方法
                }
                g[i][j]=1, l[j]=ql, c[i+j]=qc, d[i-j+n]=qd;
        }
    }
}
int main()
{
    scanf("%d", &n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            scanf("%d", &g[i][j]);
    dfs(1,2);//放白棋
    printf("%d", ans);
    return 0;
} 

嗯,对,这样就完了

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值