Codeforces Round #828 (Div. 3) 题解(A-E2)

Codeforces Round #828 (Div. 3)  这场难度在div3中感觉相对较高,题的质量是不错的,有学习价值。

A Number Replacement

思路:注意到a[i]=a[j]时必须有s[i]=s[j],而数据规模很小。因此O(n^2)暴搜解决。

代码如下:

#include <bits/stdc++.h>
using namespace std;

void solve() {
	int n;
	cin >> n;
	int a[100];
	char b[100];
	for (int i = 0; i < n; i++)
		cin >> a[i];
	cin >> b;
	for (int i = 0; i < n; i++) {
		for (int j = i + 1; j < n; j++) {
			if (a[i] != a[j])
				continue;
			if (b[i] != b[j]) {
				cout << "NO" << endl;
				return;
			}
		}
	}
	cout << "YES" << endl;
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

B Even-Odd Increments

思路:将偶数和奇数分开考虑,分别储存偶数之和、偶数个数、奇数之和、奇数个数。对于每一次操作,如果新增的x是偶数,则原奇偶性不变,如果新增的x是奇数,则改变奇偶性。

代码如下:

#include <bits/stdc++.h>
using namespace std;

void solve() {
	long long n, q, op, tp;
	long long sum1 = 0, sum2 = 0, cou1 = 0, cou2 = 0;
	cin >> n >> q;
	for (int i = 0; i < n; i++) {
		cin >> tp;
		if (tp % 2) {
			sum1 += tp;
			cou1++;
		} else {
			sum2 += tp;
			cou2++;
		}
	}
	for (int i = 0; i < q; i++) {
		cin >> op >> tp;
		if (op == 0) {
			sum2 += cou2 * tp;
			if (tp % 2) {
				sum1 += sum2;
				cou1 += cou2;
				sum2 = 0;
				cou2 = 0;
			}
		} else {
			sum1 += cou1 * tp;
			if (tp % 2) {
				sum2 += sum1;
				cou2 += cou1;
				sum1 = 0;
				cou1 = 0;
			}
		}
		cout << sum1 + sum2 << endl;
	}
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

C Traffic Light

思路:需要找到对应颜色和后面第一个Green之间距离差值的最大值。注意到红绿灯是循环的,因此O(n)扫两个循环节即可。

代码如下:

#include <bits/stdc++.h>
using namespace std;

void solve() {
	int n;
	char c;
	cin >> n >> c;
	string s;
	cin >> s;
	if (c == 'g') {
		cout << 0 << endl;
		return;
	}
	int maxm = 0;
	int flag = 0, bj;
	for (int i = 0; i < 2 * n; i++) {
		int q = i % n;
		if (flag == 0 && s[q] == c) {
			flag = 1;
			bj = i;
			continue;
		}
		if (flag == 1 && s[q] == 'g') {
			flag = 0;
			if (i - bj > maxm)
				maxm = i - bj;
		}
	}
	cout << maxm << endl;
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

D Divisibility by 2^n

思路:此题因注意到输入的数据是没用的,有用的仅仅是输入数据中有多少个2因子。先将2因子的数量统计出来,然后判断我们缺少了多少个2因子。

那缺少的2因子需要多少步操作得到呢?注意到,对于每个n=2^k的倍数,都具有k个2因子。因此我们统计含i个2因子的数的数量存在数组eys[i]中,然后模拟具体情况解决。

代码如下:

#include <bits/stdc++.h>
using namespace std;

void solve() {
	int n, tp, eyz = 0;
	int eys[100];
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &tp);
		if (eyz >= n)
			continue;
		while (tp % 2 == 0) {
			tp /= 2;
			eyz++;
		}
	}
	if (eyz >= n) {
		cout << 0 << endl;
		return;
	}
	int cz = n - eyz, sum = 0, cou = 0;
	int j = 1;
	for (int i = 2; i <= n; i *= 2) {
		eys[j] = n / i;
		j++;
	}
	for (int p = 1; p < j - 1; p++) {
		eys[p] -= eys[p + 1];
	}
	for (int p = j - 1; p >= 1; p--) {
		if (sum + eys[p]*p < cz) {
			sum += eys[p] * p;
			cou += eys[p];
			continue;
		} else {
			cou += (cz - sum) / p;
			if ((cz - sum) % p != 0)
				cou++;
			cout << cou << endl;
			return;
		}
	}
	cout << -1 << endl;
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

E1 - Divisible Numbers(easy version)

思路:将x从a+1到c遍历一遍,对于每个x,我们只需要找出是否存在一个[b+1,d]中的y满足x*y整除a*b。而x*y整除a*b可以化为y整除a*b/gcd(a*b,x)。

代码如下:

#include <bits/stdc++.h>
using namespace std;

void solve() {
	long long a, b, c, d;
	cin >> a >> b >> c >> d;
	for (long long i = a + 1; i <= c; i++) {
		long long gd = a * b / __gcd(a * b, i);
		if ((b + 1 ) % gd == 0) {
			cout << i << " " << b + 1 << endl;
			return;
		}
		if (d % gd == 0) {
			cout << i << " " << d << endl;
			return;
		}
		if ((b + 1 ) / gd == d / gd) {
			continue;
		}
		cout << i << " " << d / gd *gd << endl;
		return;
	}
	cout << -1 << " " << -1 << endl;
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

E2 - Divisible Numbers(hard version)

思路:相比E1,数据范围从1e5增大到1e9。关键要注意到,当我们遍历i时,有用的其实只是a*b/gcd(a*b,i),因此这其中进行了大量重复!我们自然想到,如果不遍历i,只遍历a*b/gcd(a*b,i),就能省去这些重复,而a*b/gcd(a*b,i)一定是a*b的因数!

因此本题先预处理分解质因数,再用dfs遍历所有因数。其余过程与E1相同。

时间复杂度呢?a*b的范围小于1e18,而1e18以内因数数量的最大值在11万左右(可百度查询)。因此不同担心超时问题。

代码如下:

#include <bits/stdc++.h>
using namespace std;
map<int, int> ys;
int A[100100], B[100010];
int cnt;
long long a, b, c, d, ANSX, ANSY;

long long fx(long long x) {
	return (a + 1 + x - 1) / x * x;
}

void q(int x) {
	for (int i = 2; i * i <= x; i++) {
		while (x % i == 0) {
			ys[i]++;
			x /= i;
		}
	}
	if (x > 1)
		ys[x]++;
	return;
}//预处理因数

long long sosolve(long long dq) {
	dq = fx(dq);
	if (dq <= a || dq > c)
		return -1;
	__int128 gd = a * b / __gcd(a * b, dq);
	if ((b + 1 ) % gd == 0) {
		return b + 1;
	}
	if (d % gd == 0) {
		return d;
	}
	if ((b + 1 ) / gd == d / gd) {
		return -1;
	}
	return d / gd * gd;
}

void dfs(long long dq, int step) {
	if (step > cnt - 1) {
		int y = sosolve(dq);
		if (y != -1) {
			ANSX = fx(dq);
			ANSY = y;
		}
		return;
	}
	__int128 k = 1;
	for (int i = 0; i <= B[step]; i++) {
		dfs(dq * k, step + 1);
		k *= A[step];
	}
}

void solve() {
	ys.clear();
	cin >> a >> b >> c >> d;
	q(a);
	q(b);
	map<int, int>::iterator t;
	cnt = 0;
	for (t = ys.begin(); t != ys.end(); t++) {
		A[cnt] = t->first;
		B[cnt] = t->second;
		cnt++;
	}
	ANSX = -1;
	ANSY = -1;
	dfs(1, 0);
	cout << ANSX << " " << ANSY << endl;
	return;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		solve();
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五百场cf灰名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值