一文深度剖析ConcurrentHashMap

前言

之前我们剖析了 HashMap 底层原理,需要的小伙伴可点击传送门跳转。

深度剖析HashMap一篇文章就够了

概述

通过学习,我们已经知道了 HashMap 是非线程安全的,为了解决线程安全问题,有哪些解决方案呢?

  • HashTable
  • Collections.synchronizedMap

以上两种方法都可以解决HashMap的线程安全问题,但这二者有个共同点,会使用 synchronized 将 hashmap 锁住来实现避免多个线程同时写入HashMap 带来的线程安全问题。导致一个线程获得资源的同时,其他线程无论读还是写操作,都会被阻塞。可想而知,这会导致性能效率低下。

那问题来了,有没有能同时兼顾线程安全和运行效率的解决方案?

本文主角登场:ConcurrentHashMap,我们来看看它是如何提高多线程操作效率的。

jdk1.7

jdk1.7 中 ConcurrentHashMap 是由 Segment 数组 和 HashEntry数组组成,每个 Segment 元素中又存放着 数组+链表的数据结构。
ConcurrentHashMap 将数据分段存储,给每段数据(Segment)配锁,当一个线程访问其中一个 Segment 时,其他Segment数据也能被其他线程访问,实现了并发访问。

【图片来自网络】

从图得知,ConcurrentHashMap 定位元素分为两个步骤:

  • 定位到 Segment
  • 定位到元素所在的链表

我们来看看ConcurrentHashMap 的内部类Segment 究竟是什么?

Segment 是 ReentrantLock 的子类,所以 Segment 是一种可重入锁,用来锁住 HashEntry 数组。Segment 数组默认大小为16,也就是并发度是16

存放元素的 HashEntry 也是一个静态内部类,组成如下:

其中,value 和 下一个节点 next 用 volatile 修饰,保证了多线程环境下数据获取时的可见性。

jdk1.8

和 jdk1.8 的 HashMap 的实现一样,采用了 Node数组+链表+红黑树的实现方式,抛弃了 jdk1.7中的 Segment 分段锁机制,采用 Synchronized 和 CAS 实现更加细粒度的锁。

将锁的级别控制在了更细粒度的哈希桶数组元素级别,只要锁住这个桶的头结点,就不会影响其他哈希桶数组元素的读写,相对于 1.7 大大提高了并发度。

源码分析

常量值

private static final int MAXIMUM_CAPACITY = 1 << 30;	// 最大容量
private static final int DEFAULT_CAPACITY = 16;		// 默认容量
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;	// 最大数组长度
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;	// 默认并行级别
private static final float LOAD_FACTOR = 0.75f;				// 负载系数
static final int TREEIFY_THRESHOLD = 8;						// 树化阈值
static final int UNTREEIFY_THRESHOLD = 6;					// 取消树化阈值
static final int MIN_TREEIFY_CAPACITY = 64;					// 最小树化数组容量,转换为红黑树的最小数组长度
private static final int MIN_TRANSFER_STRIDE = 16;			
private static int RESIZE_STAMP_BITS = 16;
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;		// 扩容的最大的线程的数量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
static final int MOVED     = -1; // hash for forwarding nodes
static final int TREEBIN   = -2; // hash for roots of trees
static final int RESERVED  = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash			// hash 位数,int 最大值
static final int NCPU = Runtime.getRuntime().availableProcessors();			// 获取CPU核数
private static final ObjectStreamField[] serialPersistentFields = {			// 序列化兼容性
    new ObjectStreamField("segments", Segment[].class),
    new ObjectStreamField("segmentMask", Integer.TYPE),
    new ObjectStreamField("segmentShift", Integer.TYPE)
};

initTable()

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
		//如果一个线程发现sizeCtl<0,意味着另外的线程执行CAS操作成功,当前线程只需要让出cpu时间片
        if ((sc = sizeCtl) < 0) 
            // 使当前线程由执行状态变为就绪状态,让出cpu
            Thread.yield(); // lost initialization race; just spin
        // compareAndSwapInt参数(要修改的值的对象,要修改的数据的值在内存中的偏移量(找到要修改的值),期望内存中的值,要修改内存的值)
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);  //0.75*capacity
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

putVal()

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 将 key的hash值再 hash,双重 hash,降低冲突概率
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 判断是否为空
        if (tab == null || (n = tab.length) == 0)
            // 初始化table
            tab = initTable();
        // 当前 bucket 为空,使用 cas 机制将put的值放到此bucket,put操作完成
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // 如果bucket不为空,并且hash = -1,说明当前map正在扩容,其他线程先协助扩容,加快速度(多线程扩容)
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        // 如果 hash 冲突了,且 hash 值不为 -1
        else {
            V oldVal = null;
            // 同步 f 节点,防止增加链表的时候导致链表成环状
            synchronized (f) {
                // 如果对应的下标位置的节点没有改变
                if (tabAt(tab, i) == f) {
                    // 如果 f 节点的hash >= 0
                    if (fh >= 0) {
                        // 链表初始长度
                        binCount = 1;
                        // 死循环,直至将节点添加到链表尾部,binCount用来计算链表长度
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果 e 的 key 与要插入的节点key值相同 或者 e 的hash 与 要插入的节点的 hash 相同
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    // 完成节点赋值,put操作成功
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            // 判断 e 是否有后继节点,如否,将后继节点赋给 e,循环
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    // 如果 f 节点的 hash < 0 并且 f 是树
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        // 向树中添加节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                              value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // 链表长度 >= 8 时,将链表转换为红黑树
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 更新容器容量,并判断是否需要扩容
    addCount(1L, binCount);
    return null;
}

helpTransfer()

 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
     Node<K,V>[] nextTab; int sc;
     // 数据校验,如果 tab不为null 并且node节点是转移类型 并且 node 节点的 nextTable 不为null,符合以上条件尝试协助扩容操作
     if (tab != null && (f instanceof ForwardingNode) &&=--
         (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
         // 根据length得到一个标识符号
         int rs = resizeStamp(tab.length);
         // 如果 nextTab 和 tab 都没有被并发修改 并且 sizeCtl < 0(说明还在扩容)
         while (nextTab == nextTable && table == tab &&
                (sc = sizeCtl) < 0) {
             // sc 右移16位 != 标识 (sc 前16位不等于标识符,代表标识符变化了)
             // sc == rs + 1 (代表扩容结束了,默认第一个协助扩容的线程设置 sc = rs左移16位+2,当第一个线程结束扩容了,会将 sc -1,所以 sc = rs+1代表扩容结束了)
             // sc == rs + MAX_RESIZERS (sc = rs+65535,如果达到了最大协助线程的数量)
             // transferIndex <= 0 (转移下标正在调整,代表扩容结束)
             // 满足以上任一条件,结束协助扩容
             if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                 sc == rs + MAX_RESIZERS || transferIndex <= 0)
                 break;
             // 如果以上都不是,将 sizeCTL + 1 ,标识增加了一个线程协助扩容
             if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                 // 将节点转移到新table
                 transfer(tab, nextTab);
                 break;
             }
         }
         return nextTab;
     }
     return table;
 }

addCount()

// 更新容器容量方法
private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
    // 如果counterCells不为null 或者 更新容器容量不成功时
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            // 多线程 cas 失败时执行, 会向 CounterCell中存储因为高并发导致cas更新baseCounter失败时的值
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        // 计算容器容量
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        // 当条件满足开始扩容
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            // 说明此时已经有线程正在扩容
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    // 有线程在扩容时,直接break
                    break;
                // 此时其他线程如果扩容完毕,修改 sc 的值,继续扩容
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            // 计算容器容量
            s = sumCount();
        }
    }
}

get()

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // 双重 hash
    int h = spread(key.hashCode());
    // 如果 table 不为空 并且查找的 key 的节点不为 null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果节点 e 的hash 是要查找的key的hash
        if ((eh = e.hash) == h) {
            // 如果节点 e 的 key 与要查找的key相等
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                // 返回 value
                return e.val;
        }
        // 判断是否是红黑树
        else if (eh < 0)
            // 遍历红黑树查找元素
            return (p = e.find(h, key)) != null ? p.val : null;
        // 遍历链表查找key值所在的节点e
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

size()

public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
            (int)n);
}

// baseCount 指的是容器容量
private transient volatile long baseCount;

final long sumCount() {
    // CounterCell 就是用来记录容器容量的内部类
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        // 累加容器数量,因为CounterCell记录的是因为高并发导致更新baseCount失败时的值,所以,需要遍历CounterCell进行累加
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

mappingCount()

// jdk1.8 推荐使用 mappingCount() 代替 size()
// 此方法返回的值是个估计值,如果存在并发插入/删除,实际计数可能不是很准确
public long mappingCount() {
    long n = sumCount();
    return (n < 0L) ? 0L : n; // ignore transient negative values
}

面试题

1、ConcurrentHashMap 实现原理?

2、ConcurrentHashMap 的 put 方法执行逻辑?

3、ConcurrentHashMap 的 get 方法执行逻辑?是否要加锁?为什么?

4、ConcurrentHashMap 不支持 key / value 为 null 的原因?

5、ConcurrentHashMap 的并发度是多少?

6、ConcurrentHashMap 迭代器是强一致性还是弱一致性?

7、ConcurrentHashMap 和 HashTable 哪个效率高?为什么?

8、HashTable 的锁机制?

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值