机器学习基础知识

本文介绍了机器学习的基础知识,包括分类、回归、监督学习、无监督学习、深度学习和强化学习的主要概念和应用实例。此外,还提到了模型评估指标如查准率、查全率、正确率和F1分数,以及机器学习预备知识,如数学基础和Python第三方库。


概述

机器学习(Machine Learning, ML) 是使用计算机来彰显数据背后的真实含义,目的是把数据转换成有用的信息。机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

一、机器学习分类

1.1 主要任务

  • 分类:将实例数据划分到合适的类别中。 应用实例:猫狗分类(二分类),手写数字的识别(多分类)
  • 回归:主要用于预测数值型数据。 应用实例:股票价格波动的预测,房屋价格的预测等。

1.2 分类方式

机器学习方法种类繁多,最常用的分类方式是根据是否在人类监督下学习分为:监督学习非监督学习深度学习强化学习
在这里插入图片描述

1.3 监督学习

机器学习模型对历史数据进行训练,进而将训练好的模型用于分类或回归,监督学习训练的数据自身带着“标签(label)”,即:每一组特征变量对应的目标变量是确定的。

例如:手写数字的识别项目中,我们已知每一张手写图片对应的数字;股票价格波动的预测项目中,我们已知历史每一时刻对应的股票价格。

1.3.1 判别式模型

假设我们有训练数据 ( X , Y ) (X,Y) (X,Y) X X X是特征集合, Y Y Y是类别标记。这时来了一个新的样本 x x x,我们想要预测它的类别 y y y。监督学习又根据件概率 P ( x ∣ y ) P(x|y) P(xy)作作为新样本的分类。

判别式模型根据训练数据得到分类函数和分界面,然后直接计算条件概率 P ( y ∣ x ) P(y|x) P(yx),我们将最大的 P ( y ∣ x ) P(y|x) P(yx)作为新样本的分类。判别式模型是对条件概率建模,学习不同类别之间的最优边界,无法反映训练数据本身的特性,能力有限,其只能告诉我们分类的类别。

1.3.2 生成式模型

生成式模型一般会对每一个类建立一个模型,有多少个类别,就建立多少个模型。比如说类别标签有{猫,狗,猪},那首先根据猫的特征学习出一个猫的模型,再根据狗的特征学习出狗的模型,之后分别计算新样本 x x x 跟三个类别的联合概率 P ( x , y ) P(x,y) P(x,y) ,然后根据贝叶斯公式: P ( y ∣ x ) = P ( x , y ) p ( x ) P(y|x)=\frac{P(x, y)}{p(x)} P(yx)=p(x)P(x,y)分别计算 P ( y ∣ x ) P(y|x) P(yx),选择三类中最大的 P ( y ∣ x ) P(y|x) P(yx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值