题目描述:
给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。
示例 1:
输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]
示例 2:
输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 10^4
1 <= m * n <= 10^4
-10^5 <= mat[i][j] <= 10^5
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/diagonal-traverse
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
本题是一道模拟类型的题目,模拟类型的题目可以从以下几个步骤来思考解题:
- 根据题目要求确定模拟的流程;
- 根据数据结构的特性,确定遍历的细节,例如遍历的边界;
-
根据题目要求确定模拟的流程:
本题是对矩阵的遍历进行模拟,遍历顺序是沿对角线先往右上方向进行遍历,然后往左下方向进行遍历,两者交替进行,如图所示:
-
根据数据结构的特性,确定遍历的细节:
-
本题是模拟的数据结构为矩阵,也即二维数组;二维数组的遍历可以通过下标来控制,延对角线往右上方向遍历,可以通过
i--,j++
来控制,延对角线往左下方向遍历,可以通过i++,j--
, 其中i
表示行,j
表示列。 -
遍历的边界:
- 延对角线往右上方向遍历时,遍历的边界为
i >= 0 && j < n
; - 延对角线往左下方向遍历时,遍历的边界为
i < m && j >= 0
;
- 延对角线往右上方向遍历时,遍历的边界为
-
如何控制遍历顺序:
我自己曾有的一个固化思维是,先进行遍历,当遇到遍历的边界时,再调整遍历的顺序;这种解题的思路有一个弊端,调整遍历顺序的代码会相对繁琐,容易对编码中的细节考虑不周全,导致编码过程中思路混乱,不易写出简洁明了的代码。
而先确定遍历次序再进行遍历,整体的编码思路会相对清晰,编码细节好把控。
本题中遍历矩阵的顺序是确定的,先延对角线往右上方向遍历,再延对角线往左下方向遍历,两者交替进行直至遍历完矩阵中所有元素。由遍历顺序的特点可得,
m x n
的矩阵有m + n - 1
条题中所述的遍历的对角线,即可以把它理解为有m + n - 1
层的遍历,因此我们可以根据遍历的层数来控制遍历的顺序;- 当
k % 2 == 0
,延对角线往右上方向遍历; - 当
k % 2 == 1
,延对角线往左下方向遍历;
其中
0 <= k < m+n-1
; - 当
-
确定好了遍历顺序,最后就要确定每层遍历的起始坐标了;由遍历特点可得:
k % 2 == 0
时,i = k < m ? k : m - 1
,j = k < m ? 0 : k - m + 1
;k % 2 == 1
时,i = k < n ? 0 : k - n + 1
,j = k < n ? k : n - 1
;
-
实现代码:
class Solution {
public:
vector<int> findDiagonalOrder(vector<vector<int>>& mat) {
int m = mat.size(), n = mat[0].size();
vector<int> ans(m * n);
int cnt = 0;
for (int i = 0; i < m + n - 1; i++) {
if (i % 2 == 0) {
int x = i < m ? i : m - 1;
int y = i < m ? 0 : i - m + 1;
while (x >= 0 && y < n) {
ans[cnt] = mat[x][y];
cnt++;
x--;
y++;
}
}
else {
int x = i < n ? 0 : i - n + 1;
int y = i < n ? i : n - 1;
while (x < m && y >= 0) {
ans[cnt] = mat[x][y];
cnt++;
x++;
y--;
}
}
}
return ans;
}
};