模拟题 | leetcode 498.对角线遍历

题目描述:

给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。

示例 1:

在这里插入图片描述

输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]

示例 2:

输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 10^4
  • 1 <= m * n <= 10^4
  • -10^5 <= mat[i][j] <= 10^5

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/diagonal-traverse
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

本题是一道模拟类型的题目,模拟类型的题目可以从以下几个步骤来思考解题:

  • 根据题目要求确定模拟的流程;
  • 根据数据结构的特性,确定遍历的细节,例如遍历的边界;
  1. 根据题目要求确定模拟的流程:

    本题是对矩阵的遍历进行模拟,遍历顺序是沿对角线先往右上方向进行遍历,然后往左下方向进行遍历,两者交替进行,如图所示:

    在这里插入图片描述

  2. 根据数据结构的特性,确定遍历的细节:

    • 本题是模拟的数据结构为矩阵,也即二维数组;二维数组的遍历可以通过下标来控制,延对角线往右上方向遍历,可以通过 i--,j++ 来控制,延对角线往左下方向遍历,可以通过 i++,j-- , 其中 i 表示行,j 表示列。

    • 遍历的边界:

      • 延对角线往右上方向遍历时,遍历的边界为 i >= 0 && j < n
      • 延对角线往左下方向遍历时,遍历的边界为 i < m && j >= 0
    • 如何控制遍历顺序:

      我自己曾有的一个固化思维是,先进行遍历,当遇到遍历的边界时,再调整遍历的顺序;这种解题的思路有一个弊端,调整遍历顺序的代码会相对繁琐,容易对编码中的细节考虑不周全,导致编码过程中思路混乱,不易写出简洁明了的代码。

      而先确定遍历次序再进行遍历,整体的编码思路会相对清晰,编码细节好把控。

      本题中遍历矩阵的顺序是确定的,先延对角线往右上方向遍历,再延对角线往左下方向遍历,两者交替进行直至遍历完矩阵中所有元素。由遍历顺序的特点可得,m x n 的矩阵有 m + n - 1 条题中所述的遍历的对角线,即可以把它理解为有 m + n - 1 层的遍历,因此我们可以根据遍历的层数来控制遍历的顺序;

      • k % 2 == 0 ,延对角线往右上方向遍历;
      • k % 2 == 1 ,延对角线往左下方向遍历;

      其中 0 <= k < m+n-1

    • 确定好了遍历顺序,最后就要确定每层遍历的起始坐标了;由遍历特点可得:

      • k % 2 == 0 时,i = k < m ? k : m - 1j = k < m ? 0 : k - m + 1
      • k % 2 == 1 时, i = k < n ? 0 : k - n + 1j = k < n ? k : n - 1

实现代码:

class Solution {
public:
    vector<int> findDiagonalOrder(vector<vector<int>>& mat) {
        int m = mat.size(), n = mat[0].size();
        vector<int> ans(m * n);
        int cnt = 0;
        for (int i = 0; i < m + n - 1; i++) {
            if (i % 2 == 0) {
                int x = i < m ? i : m - 1;
                int y = i < m ? 0 : i - m + 1;
                while (x >= 0 && y < n) {
                    ans[cnt] = mat[x][y];
                    cnt++;
                    x--;
                    y++;
                }
            }
            else {
                int x = i < n ? 0 : i - n + 1;
                int y = i < n ? i : n - 1;
                while (x < m && y >= 0) {
                    ans[cnt] = mat[x][y];
                    cnt++;
                    x++;
                    y--;
                } 
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值