一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:
- 二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,且不能颠倒次序。
两种特殊的二叉树:
- 完全二叉树:对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
- 满二叉树:如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
二叉树的遍历
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。(根左右)
- LNR:中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。(左根右)
- LRN:后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。(左右根)
- 层序遍历:从上到下,从左至右。
如图,改二叉树的各个遍历结果为
前序:A B D E C F G
中序:D B E A F C G
后序:D E B F G C A
层序:A B C D E F G
遍历及求结点代码:
重点在于递归
package packagetree;
class Node{
Node left;
Node right;
char val;
public Node(char val) {
this.val = val;
}
}
public class BinaryTree {
//空树
private static Node root = null;
//构建一棵树
public static Node build(){
Node A = new Node('A');
Node B = new Node('B');
Node C = new Node('C');
Node D = new Node('D');
Node E = new Node('E');
Node F = new Node('F');
Node G = new Node('G');
A.left = B;
A.right = C;
B.left = D;
B.right = E;
E.right = G;
C.right = F;
return A;
}
//先序遍历
public static void preOrder(Node root){
if(root == null){
return;
}
//访问用打印表示
System.out.print(root.val);
preOrder(root.left);
preOrder(root.right);
}
//中序遍历
public static void inOrder(Node root){
if(root == null){
return;
}
inOrder(root.left);
System.out.print(root.val);
inOrder(root.right);
}
//后序遍历
public static void postOrder(Node root){
if(root == null){
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val);
}
//层序遍历
public void levalOrder(Node root){
if(root == null){
return;
}
//创建一个队列辅助进行遍历
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
//循环取队首元素,并访问
Node cur = queue.poll();
System.out.println(cur.val + " ");
//把当前这个队首元素左子树右子树都插入到队列中
if(cur.left != null){
queue.offer(cur.left);
}
if(cur.right != null){
queue.offer(cur.right);
}
}
}
//求树的结点
public static int size(Node root){
if(root == null){
return 0;
}
return 1 + size(root.left) + size(root.right);
}
//求树的叶子结点个数
public static int getLeafSize(Node root){
if(root == null){
return 0;
}
if(root.left == null && root.right == null) {
return 1;
}
return getLeafSize(root.left) + getLeafSize(root.right);
}
}