User-agent反爬

该博客介绍了如何在Python中实现反爬机制,特别是针对校园新闻网列表页的User-Agent反爬。通过使用`fake_useragent`库生成随机User-Agent,避免被网站识别为爬虫。代码展示了如何结合`requests`库发送带User-Agent的HTTP请求,并利用`Scrapy`的`Selector`解析响应内容,提取页面数据。
摘要由CSDN通过智能技术生成
'''
校园新闻网列表页User-agent反爬
'''
from common.tools import Tool
import requests
from scrapy.selector import Selector
class User_Agent:
    def __init__(self):
        self.tool = Tool.get_tool()

    def run(self):
        url = 'http://www.porters.vip/verify/uas/index.html'
        headers = {}
        headers = self.tool.get_user_agent(headers)
        r = requests.get(url=url,headers=headers)
        if r.status_code == 200:
            titles = Selector(r).xpath("//ul[@class='list-group']/li/text()").extract()
            for title in titles:
                print(title)

if __name__ == '__main__':
    User_Agent().run()

Tools:

import os

from PIL import Image
import io
import pytesseract
import requests
from fake_useragent import UserAgent
class Tool:

    @classmethod
    def get_tool(cls):
        return cls()

    def get_user_agent(self,headers):
        ua = UserAgent()
        headers['User-Agent'] = ua.random
        return headers
    def get_cookie(self,cookie_str):
        c_b = cookie_str.split(',')
        cookies = {}
        for cookie in c_b:
            k,v = cookie.split('=')
            cookies[k] = v
        return cookies
    def tessseract_img(self,img_url):
        # 识别图片文字数字
        img_body = requests.get(img_url).content
        image_stream = Image.open(io.BytesIO(img_body))

        image_stream = image_stream.convert('L')
        if os.path.exists('a.jpg'):
            os.remove('a.jpg')
        image_stream.save('a.jpg')
        Image.open(r'a.jpg')
        return pytesseract.image_to_string(image_stream,lang='eng')

----参考python3反爬虫原理与绕过实战

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值