Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 86914 Accepted Submission(s): 37595
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
Source
UESTC 6th Programming Contest Online
题解:时间复杂度O(N2),处理单源最短路问题
代码:Dijkstra算法
#include<bits/stdc++.h>
using namespace std;
#define maxn 105
#define INF 0x3f3f3f3f
int a[maxn][maxn];
bool vis[maxn];
int dis[maxn];
int n;
void Dij(int x,int y)
{
for(int i=1;i<=n;i++)
{
dis[i]=a[1][i];
vis[i]=false;
}
vis[x]=true;
int p;
for(int i=1;i<=n;i++)
{
int minn=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]<minn)
{
minn=dis[j];
p=j;
}
}
vis[p]=true;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[p]+a[p][j]<dis[j])
{
dis[j]=dis[p]+a[p][j];
}
}
}
}
int main()
{
int m;
while(cin>>n>>m&&n&&m)
{
int x,y,z;
memset(a,INF,sizeof(a));
while(m--)
{
cin>>x>>y>>z;
a[x][y]=a[y][x]=z;
}
Dij(1,n);
cout<<dis[n]<<endl;
}
return 0;
}
Floyd算法:
时间复杂度为O(N^3),空间复杂度为O(N^2)。要求被解图的顶点不超过200,否则可能超时,适用于全源最短路径。
#include<iostream>
#include<stdio.h>
using namespace std;
#define N 101
int ans[N][N];
int main()
{
int n,m;
while(cin>>n>>m&&n&&m)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
ans[i][j]=-1;
}
ans[i][i]=0;
}
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
ans[a][b]=ans[b][a]=c;
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(ans[i][k]==-1||ans[k][j]==-1) //若两值有一个值是-1,即无穷,则ans[i][j]由于不能经过k点而被更新。
continue;
if(ans[i][j]==-1||ans[i][k]+ans[k][j]<ans[i][j])
ans[i][j]=ans[i][k]+ans[k][j];
}
}
}
cout<<ans[1][n]<<endl;
}
return 0;
}