HDU 2544:最短路(Dijkstra算法,Floyd算法)

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 86914    Accepted Submission(s): 37595


 

Problem Description

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
 

 

Input

输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。

 

Output

对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间

 

Sample Input

2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0

 

Sample Output

3 2

 

 

Source

UESTC 6th Programming Contest Online

 

题解:时间复杂度O(N2),处理单源最短路问题

代码:Dijkstra算法

#include<bits/stdc++.h>
using namespace std;
#define maxn 105
#define INF 0x3f3f3f3f
int a[maxn][maxn];
bool vis[maxn];
int dis[maxn];
int n;
void Dij(int x,int y)
{
    for(int i=1;i<=n;i++)
    {
        dis[i]=a[1][i];
        vis[i]=false;
    }
    vis[x]=true;
    int p;
    for(int i=1;i<=n;i++)
    {
        int minn=INF;
        for(int j=1;j<=n;j++)
        {
            if(!vis[j]&&dis[j]<minn)
            {
                minn=dis[j];
                p=j;
            }
        }
        vis[p]=true;
        for(int j=1;j<=n;j++)
        {
            if(!vis[j]&&dis[p]+a[p][j]<dis[j])
            {
                dis[j]=dis[p]+a[p][j];
            }
        }
    }
}
int main()
{
    int m;
    while(cin>>n>>m&&n&&m)
    {
        int x,y,z;
        memset(a,INF,sizeof(a));
        while(m--)
        {
            cin>>x>>y>>z;
            a[x][y]=a[y][x]=z;
        }
        Dij(1,n);
        cout<<dis[n]<<endl;
    }
    return 0;
}

 

Floyd算法:

时间复杂度为O(N^3),空间复杂度为O(N^2)。要求被解图的顶点不超过200,否则可能超时,适用于全源最短路径。

#include<iostream>
#include<stdio.h>
using namespace std;
#define N 101
int ans[N][N];
int main()
{
    int n,m;
    while(cin>>n>>m&&n&&m)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                ans[i][j]=-1;
            }
            ans[i][i]=0;
        }
        for(int i=0;i<m;i++)
        {
            int a,b,c;
            cin>>a>>b>>c;
            ans[a][b]=ans[b][a]=c;
        }
        for(int k=1;k<=n;k++)
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(ans[i][k]==-1||ans[k][j]==-1) //若两值有一个值是-1,即无穷,则ans[i][j]由于不能经过k点而被更新。
                        continue;
                    if(ans[i][j]==-1||ans[i][k]+ans[k][j]<ans[i][j])
                        ans[i][j]=ans[i][k]+ans[k][j];
                }
            }
        }
        cout<<ans[1][n]<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值