自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 资源 (1)
  • 收藏
  • 关注

原创 【无标题】

图像增广和xml文件处理

2022-12-14 10:36:03 182 1

原创 第1章 统计学习方法概论(第2版)

第1章 统计学习方法概论(第2版) 使用最小二乘法拟和曲线 高斯于1823年在误差e1,…,ene_1,…,e_ne1​,…,en​独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的! 对于数据(xi,yi)(i=1,2,3...,m)(x_i, y_i) (i=1, 2, 3...,m)(xi​,yi​)(i=1,2,3...,m) 拟合出函数h(x)h(x)h(x) 有误差,即残差:ri=h(xi)−yir_i=h(x_i)-y_iri​=

2022-05-13 17:07:33 339

原创 基于深度学习框架的线性回归

使用深度学习框架来简介实现线性回归模型,生成数据集 导入相关数据包 import numpy as np import torch from torch.utils import data from d2l import torch as d2l 生成人工数据集 我们使⽤线性模型参数w = [2, −3.4]⊤、b = 4.2 和噪声项ϵ⽣成数据集及其标签: true_w = torch.tensor([2, -3.4]) true_b = 4.2 features, labels = d2l.synth

2022-02-19 18:23:54 628

原创 线性回归pytorch代码实现

线性回归 %matplotlib inline import random import torch import matplotlib.pyplot as plt from d2l import torch as d2l 生成数据集 我们使⽤线性模型参数w = [2, −3.4]⊤、b = 4.2 和噪声项ϵ⽣成数据集及其标签 def synthetic_data(w,b,num_examples): x = torch.normal(0,1,(num_examples,len(w)))#生成一

2022-02-19 11:33:21 1255

R-CNN/Fast-R-CNN/Faster-R-CNN原始英文论文

Two-Stage目标检测中经典论文

2022-03-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除