- 博客(4)
- 资源 (1)
- 收藏
- 关注
原创 第1章 统计学习方法概论(第2版)
第1章 统计学习方法概论(第2版) 使用最小二乘法拟和曲线 高斯于1823年在误差e1,…,ene_1,…,e_ne1,…,en独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的! 对于数据(xi,yi)(i=1,2,3...,m)(x_i, y_i) (i=1, 2, 3...,m)(xi,yi)(i=1,2,3...,m) 拟合出函数h(x)h(x)h(x) 有误差,即残差:ri=h(xi)−yir_i=h(x_i)-y_iri=
2022-05-13 17:07:33 339
原创 基于深度学习框架的线性回归
使用深度学习框架来简介实现线性回归模型,生成数据集 导入相关数据包 import numpy as np import torch from torch.utils import data from d2l import torch as d2l 生成人工数据集 我们使⽤线性模型参数w = [2, −3.4]⊤、b = 4.2 和噪声项ϵ⽣成数据集及其标签: true_w = torch.tensor([2, -3.4]) true_b = 4.2 features, labels = d2l.synth
2022-02-19 18:23:54 628
原创 线性回归pytorch代码实现
线性回归 %matplotlib inline import random import torch import matplotlib.pyplot as plt from d2l import torch as d2l 生成数据集 我们使⽤线性模型参数w = [2, −3.4]⊤、b = 4.2 和噪声项ϵ⽣成数据集及其标签 def synthetic_data(w,b,num_examples): x = torch.normal(0,1,(num_examples,len(w)))#生成一
2022-02-19 11:33:21 1255
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人