教师导语
学生发现和提出问题绝不仅仅是学习的开始,它应该贯穿于学习的全过程,学生在解决问题的基础上,会不断产生新问题,这一问题又成为新的思考的开始,我们的作用就体现在不断激发他们深度参与与持续思考,从而促使学生不断去研究。
这学期我们在学习了圆柱与圆锥的体积后,我就思考着:圆柱与圆锥在等底等高的前提下它们的表面积到底有何关系呢?这个问题光靠观察是远远不够的,于是我查阅了相关资料,了解了一些推导公式,进行了两次深入分析,从而发现了圆柱和圆锥的表面积之间的一些微妙关系。由于表面积是由底面积与侧面积组成,故解决了以下几个问题,它们之间的关系就迎刃而解了(默认圆柱和圆锥等底等高)!

so easy!圆柱两个底,圆锥一个底,故它们是2倍(½)关系。
第二个问题:求证侧面积这部分较为复杂,也是最关键的部分,分成如下几步:
1、观察:圆柱体侧面沿高展开为长方形;圆锥体侧面沿母线展开为扇形。


2、求侧面积:
*圆柱体侧面积:S=2πrh (r为底面半径,h为圆柱高)
*圆锥体侧面积:由于圆锥体侧面展开是个扇形,故扇形面积公式中的R为扇形半径,非底面半径。但是我发现这个公式中有n,而圆柱体表面积公式中没有n,,没法比较,无法作答,于是我就想到了另外一个扇形公式,S=½RL(L为扇形弧长,R为扇形半径),此公式推理如下:
虽然圆锥侧面积就等于扇形面积,但是公式中字母代表的的含义有所不同,在这里我们学到了一个新名词——“母线”,它是圆锥顶点到底面周长上任意一点的距离,由于扇形弧长L是圆锥的底面周长,故圆锥体侧面(为区分扇形弧长L,此处L'为圆锥母线,实际上R=L')
看到这里,是不是感觉字母有点晕?扇形半径R在圆锥体里称作为母线,即L’,它又容易跟扇形弧长L相混淆。
终 极 PK通过理解母线的定义,我得出一个很重要的信息:圆柱的母线=圆柱的高,即h。
由于h与L'都为母线,故误认为它们相等,所以暂时得出结论,圆柱表面积=2倍圆锥表面积。
待续……

老师看到我的结论后,没有直接判对错与否,而是鼓励我再进行验证结论是否严谨,不出所料,验算结果果然是错误的,它们之间不是2倍的关系!那么问题来了,到底哪里弄错了呢?是推导公式错了还是代入字母错了?最后我找到了错误根源,就是母线!
回顾一下:求证扇形面积S=½RL没有错,圆锥体表面积S=πr²+πrL’ 没错,但是在与圆柱体表面积对比时,由于对母线的认识混淆,出错了!仔细看两个表面积公式:
很明显L'≠h,圆锥的母线比圆柱的母线长,即L’>h,进一步论证就是一个直角三角形的斜边必然大于直角边。
问题二 不是2倍的关系,是几倍的关系呢?非常惭愧,经过思考,以我目前的理解无法证明它们之间有固定的倍数关系。再深入想想,终于得出一个区间值。
由公式比值得出结论,L'位于分母,且大于位于分子的h,故比值一定小于2,所以它们之间的倍数关系是:圆柱表面积是圆锥表面积的1-2倍。两个图形的母线数值越接近,表面积相差越大,越接近2倍。从而推导出等底等高的圆柱圆锥体,越扁平,它们之间的表面积差越小,反之越高挑,表面积差越大。
随着思考不断的深入,它们之间的关系越来越清晰,越来越紧密,我相信通过知识的逐渐累积,终将探索出它们之间更深层次的奥秘。
猜您喜欢往期精选▼1.女生头像霸气 个性霸气女生头像
2.女生动漫头像 御姐动漫女生头像
3.木兰诗原文 木兰诗原文及翻译
4.手机投屏电视怎么设置 一招教你手机如何投屏到电视上
5.肖战视频专访 正面回应227事件,先后两次进行道歉
6.2020情侣头像情侣专用 情侣头像真人一人一半
7.闺蜜头像后半生的风水,从扔掉这三样开始两人一人一张|两人四人闺蜜头像
8.谷歌卫星地图2020年高清最新版>>>
9.安全教育平台登录入口 安全教育平台我的作业
10.脑筋急转弯大全及答案爆笑版 脑筋急转弯大全及答案(搞笑版)