pandas批量写入到mysql_基于python,pandas,pymysql 将数据批量高效写入mysql数据库(保证可以用的那种)...

本文介绍了如何使用Python的pandas和pymysql库,通过批量处理数据,高效地将数据写入MySQL数据库。文中详细阐述了从文件读取、数据处理、数据库连接到数据插入的全过程,适用于需要批量处理数据库操作的场景。
摘要由CSDN通过智能技术生成

编程界的小学生一枚,主要使用语言为python,平时要和数据打交道,还有erp系统相关以及web开发等等,有时间就会分享下工作中遇到的那点事,包括那些让我焦虑的问题,包括我自己总结的小技巧,那些程序优化重构的实现,还有可能包括程序性能优化,以及源码的阅读等等···在荆棘的道路上逆风前行

本文基于python, pandas, pymysql实现了向数据库中批量插入数据的脚本,一方面提供给被网上很多瞎转载的答案给坑蒙了的人(因为我也是),一方面自己也做个笔记,以后方便查阅

文章目录

需求原因

版本库信息

逻辑梳理

分步实现及分析

读取文件

文件的拼接及计算

初始化连接

对应接口转换数据

将数据写入数据库

检查数据库是否插入成功

完整代码

需求原因

最近在处理一个需求,有关批量往数据库插入数据的,描述如下

原来的程序是基于sql的存储过程进行数据的更新修改操作,这样的结果就是对数据库压力太大,于是需要将程序重构为用python读取文件的方式将数据做计算处理,减少这部分的压力,最后仅仅将计算的结果重新更新到数据库中就可以了,减少了极大的压力,也降低了成本。涉及数据库主要是插入及更新操作

版本库信息

这个脚本是基于linux系统写的

三方库 pandas 1.0.5, pymysql 0.9.3

python版本 3.7

标准库 os

逻辑梳理

实际上,最后一步,要写入数据库的文件数据是存储在内存中的。因为读取文件后进行的计算都是在内存中进行的,那么计算的结果也没必要再写到本地,再去读取,再写入数据库,这是会影响程序的效率的

读取文件

文件的拼接及计算,生成新的df

初始化数据库的连接

将df所需数据转换为元组数据(取决于数据库的三方库的接口是如何支持批量操作的)

将数据写入数据库

检查数据库内容即可

分步实现及分析

读取文件

给文件路径,然后去读文件就行了,强调一下需要注意的点

绝对路径: 这种最简单,直接给路径字符串就行了,但是一旦文件夹目录结构变化,就需要频繁的改

相对路径: 我一般喜欢先在脚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值