贪心算法和动态规划非常类似,都可以用于求解最优化问题,有的问题用两种方法都可以解决。
贪心算法思想:在每一步都求解极值,即当前状态下的最优解,进而可以求得全局最优解。因此贪心算法使用是有条件的,有的时候局部最优并不会得到全局最优,我们可以举出一个反例即可,这样就只能用动态规划了。
考虑如下的零钱问题:给定2元5角,1元和1角的硬币若干,怎么用最少的数量凑出6元3角?首先贪心算法:每一步求最大值,即依次选择2元5角、2元5角、1元、3个1角。
但是能否举出反例?
给定1元1角,5角和1角的硬币若干,怎么用最少的数量凑出1元5角?
如果贪心算法:1元1角,4个1角(错误,应该是1元、5角),则证明要用DP求解。
自下而上的解决:动态规划(全局最优解中每步的最优可能依赖子问题的解)。
自上而下的解法:贪心算法(每一步的最优解可以立马确定,和子问题没有关系)
常见的贪心算法有:最短路径算法、最小生成树、哈夫曼树
例子:1、合并果子问题
问题介绍:
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
//哈夫曼树问题
int min_strength(int n,vector<int>& arr)
{
int ans = 0;
//最小堆,vector是底层存储堆的结构
priority_queue<int, vector<int>, greater<int>> q;
for (int item : arr) {
q.push(item); //建堆
}
int f1, f2;
while (q.size() > 1) { //只要优先队列中存在不止一个元素
f1 = q.top();
q.pop();
f2 = q.top(); //取两个最小的数(局部最优),贪心算法
q.pop();
q.push(f1 + f2); //将和入队
ans += f1 + f2;
}
return ans;
}