2020年蓝桥杯第十一届校内赛真题解析--算法设计--数位递增

2020年蓝桥杯第十一届校内赛真题解析--算法设计--数位递增

比赛记录

本人于2020年3月14日14:00~18:00,参加了本校组织的校内模拟赛 。
本次校内模拟赛的感受较好,我觉得这次的难度适中,大家应该都可以取得自己理想的成绩。

问题描述

一个正整数如果任何一个数位不大于右边相邻的数位,则称为一个数位递增的数,例如1135是一个数位递增的数,而1024不是一个数位递增的数。
  给定正整数 n,请问在整数 1 至 n 中有多少个数位递增的数?

输入格式

输入的第一行包含一个整数 n。

输出格式

输出一行包含一个整数,表示答案。

样例输入

30

样例输出

26

评测用例规模与约定

对于 40% 的评测用例,1 <= n <= 1000。
 对于 80% 的评测用例,1 <= n <= 100000。
 对于所有评测用例,1 <= n <= 1000000。

解析

import java.util.Scanner;

public class Main {
	public static int n=0,count=0;
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();
		sc.close();
		f(0,1);
		System.out.println(count-1);
	}
	public static  void f(int num,int temp){
		if(num>n){
			return;
		}
		else{
//			System.out.println(num);
			count++;
		}
		for (int i = temp; i <10; i++) {
			f(num*10+i,i);
		}
	}
	

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值