Karp 21 NPC

本文介绍了计算复杂性理论中的21个NPC问题,包括SAT问题、0-1整数规划、最大团、图着色数等,详细阐述了每个问题的定义和性质,展示了它们在计算机科学中的重要地位。
摘要由CSDN通过智能技术生成

历史简介
计算复杂性理论发展:

  • 1971年,史提芬·古克证明了第一个NPC问题——布尔可满足性问题
  • 1972年,理查德·卡普进一步推进,证明了21个不同的NPC问题。《Reducibility Among Combinatorial Problems》"。
1、 SAT问题(SATISFIABILITY)

判断合取范式(有限个简单析取式的合取)是否可满足)

2、 0-1整数规划(0-1 INTEGER PROGRAMMING)

对整形矩阵C和整形向量d,判断是否存在0-1向量x,s.t. Cx=d.

3、 最大团(CLIQUE)

判断图G中是否存在规模为K的团。

4、 (SET PACKING)

判断集合族中是否存在l个两两不交的集合。

5、 最小点覆盖(NODE COVER)

判断是否存在G中规模≤l的点集覆盖G中所有弧(E)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值