唐宇迪机器学习笔记之决策树模型理论学习之一(通俗理解)

1.决策树模型定义

从根节点开始,一步步走到叶子节点的过程,所有的数据最终都会落到叶子节点。

根节点:第一个选择点;

中间过程:非叶子节点与分支;

叶子节点:最终决策的结果。

2.决策树模型的训练与测试

训练阶段:从给定的训练集构造出一颗树来,从根节点开始选择特征,特征的选择是根据信息熵增益的大小来进行选择,增益越大越优先进行选择。

测试阶段:根据构造的树模型,从上到下,走一遍模型就可以了。

3.决策树模型训练过程

训练目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出最好的那个当成根节点,以此类推。

衡量标准有多种算法,比如信息增益(ID3),信息增益率(C4.5),使用GINI系数来当做衡量标准(CART)

最常用的是信息增益,特征X使得类Y的不确定性减少的程度,减少的程度越大,信息增益越大,就越应该优先作为分支。

不确定性就是熵,用如下公式进行表述。

H(X)=-\sum p_i*logp_i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值