机器学习实战
poppy_MCT
开开心心搞技术
展开
-
机器学习实战第一章01
1.1什么是机器学习?机器学习的主要目标是分类。我们最终决定使用某个机器学习算法进行分类,首先需要做的事算法训练,即学习如何分类。通常我们为算法输入大量已分类数据作为算法的训练集。训练集是用于训练机器学习算法的数据样本集合,表1-1是包含六个训练样本的训练集,每个训练样本有4种特征、一个目标变量。目标变量是及其学习算法的预测结果,在分类算法中目标变量的类型通常是标称型的,而在回归算法中通常是连...原创 2018-11-24 21:08:32 · 467 阅读 · 0 评论 -
机器学习实战第一章02
1.5 Python语言的优势基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1)Python的语法清晰;(2)易于操作纯文本文件;(3)使用广泛,存在大量的开发文档。1.5.1 可执行伪代码Python具有清晰的语法结构,大家也把它称作可执行伪代码。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以...原创 2018-11-26 20:38:18 · 247 阅读 · 0 评论 -
机器学习实战第二章k-近邻算法01
本章内容k-近邻分类算法 从文本文件中解析和导入数据 使用Matplotlib创建扩散图 归一化数值众所周知,电影可以按照题材分类,然而题材本身是如何定义的?有谁来判定某部电影属于哪个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问题。没有哪个电人会说自己制作的电影和以前的某部电影类似,但我们确实知道每部电影在风格上的确有可能会和同题材的电影相近。那...原创 2018-11-27 20:09:56 · 506 阅读 · 0 评论 -
机器学习实战第三章决策树01决策树简介
本章内容简介决策树简介 在数据集中度量一致性 使用递归构造决策树 使用Matplotlib绘制树形图你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或者错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围。决策树的工作原理与20个问题类似,用户输入一系列数据,然后给出游戏答案。我们经常...原创 2018-12-07 20:05:44 · 739 阅读 · 0 评论 -
机器学习实战第二章k-近邻算法04手写识别系统
2.3 示例:手写识别系统本节我们一步步地构造使用k-近邻分类器的手写识别系统。为了简单起见,这里构造的系统只能识别数字0到9,参见图2.6。需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素的黑白图像。尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式。示例:使用k-近邻算法的手写识别系统(1)收集数据...原创 2018-12-05 15:35:59 · 342 阅读 · 0 评论 -
机器学习实战第二章k-近邻算法02
2.2 示例:使用k-近邻算法改进约会网站的配对效果我的朋友海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。经过一番总结,他发现曾交往过三种类型的人:不喜欢的人 魅力一般的人 极具魅力的人尽管发现了上述规律,但海伦依然无法将约会网站推荐的匹配对象归入恰当的分类。她觉得可以在周一到周五约会哪些魅力一般的人,而周末则更喜欢与那些极具...原创 2018-12-03 15:17:04 · 285 阅读 · 0 评论 -
机器学习实战第二章k-近邻算法03
2.2.4 测试算法:作为完整程序验证分类器上节我们已经将数据按照要求做了处理,本节我们经测试分类器的效果,如果分类器的正确率满足要求,海伦就可以使用这个软件来处理约会网站提供的约会名单了。机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。以后会介绍一些高级方法完成同样的任务,这里我...原创 2018-12-03 20:52:09 · 185 阅读 · 0 评论 -
机器学习实战第三章决策树02递归构建决策树
3.1.3 递归构建决策树目前我们已经学习了从数据集构造决策树算法所需要的子功能模块,其工作原理如下:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据将被向下传递到树分支的下一个节点,在这个节点上,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。递归结束的条件是:程序遍历完所有划分数据集的属性,或...原创 2019-01-08 15:51:58 · 632 阅读 · 0 评论