# 西瓜书习题1.2

好瓜←→ ((色泽=*)∧（根蒂=蜷缩）∧（敲声=*)）∨（（色泽=乌黑）∧(根蒂=*）∧(敲声=沉闷））


1青绿蜷缩浊响
2乌黑蜷缩浊响
3青绿硬挺清脆
4乌黑稍蜷沉闷

# 题面解析

S⊗S⊗S⊗S⊗S→S的映射[(1,1,1,1,1)，（1,1,1,1,2），…，（5，5,5，5,4），（5,5,5,5,5）]

k=5的析合范式

((色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆))∨((色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆))∨((色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆))∨((色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆))∨((色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆))


(色泽=青绿)∧（根蒂=蜷缩）∧（敲声=清脆)


S⊗S⊗S⊗S⊗S→S的映射[(1,2,3,4,5)]

[a1b1c1,a1b1c2,a1b1c3,a1b2c1,a1b2c2,a1b2c3,a1b3c1,a1b3c2,a1b3c3,
a2b1c1,a2b1c2,a2b1c3,a2b2c1,a2b2c2,a2b2c3,a2b3c1,a2b3c2,a2b3c3]

123
a色泽=青绿色泽=乌黑----
b根蒂=蜷缩根蒂=稍蜷根蒂=硬挺
c敲声=浊响敲声=清脆敲声=沉闷

k=1,时所有的析合式为：
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
k=2,时，所有的析合范式为：
[(1,2),(1,3),(1,4),(1,5),…,(1,17),(1,18),(2,3),(2,4),(2,5),…(2,18),…,(16,17),(16,17),(16,18),(17,18)] 所有可能的析合范式的个数为，17+16+15+…+3+2 即为152
k=3时，[(1,2,3),(1,2,4),(1,2,5),…(1,3,4),(1,3,5),(1,3,6).(1,3,7),…(1,16,17)

result=0
for i in range(1,17):
for j in range((i+1),19):
for k in range((j+1),19):
print((i,j,k))
result=result+1

print(result)



(1, 2, 3)
(1, 2, 4)
(1, 2, 5)
(1, 2, 6)
(1, 2, 7)
(1, 2, 8)
(1, 2, 9)
(1, 2, 10)
(1, 2, 11)
(1, 2, 12)
(1, 2, 13)
(1, 2, 14)
(1, 2, 15)
(1, 2, 16)
(1, 2, 17)
(1, 2, 18)
(1, 3, 4)
(1, 3, 5)
(1, 3, 6)
(1, 3, 7)
(1, 3, 8)
(1, 3, 9)
(1, 3, 10)
(1, 3, 11)
(1, 3, 12)
(1, 3, 13)
(1, 3, 14)
(1, 3, 15)
(1, 3, 16)
(1, 3, 17)
(1, 3, 18)
(1, 4, 5)
(1, 4, 6)
(1, 4, 7)
(1, 4, 8)
(1, 4, 9)
(1, 4, 10)
(1, 4, 11)
(1, 4, 12)
(1, 4, 13)
(1, 4, 14)
(1, 4, 15)
(1, 4, 16)
(1, 4, 17)
(1, 4, 18)
(1, 5, 6)
(1, 5, 7)
(1, 5, 8)
(1, 5, 9)
(1, 5, 10)
(1, 5, 11)
(1, 5, 12)
(1, 5, 13)
(1, 5, 14)
(1, 5, 15)
(1, 5, 16)
(1, 5, 17)
(1, 5, 18)
(1, 6, 7)
(1, 6, 8)
(1, 6, 9)
(1, 6, 10)
(1, 6, 11)
(1, 6, 12)
(1, 6, 13)
(1, 6, 14)
(1, 6, 15)
(1, 6, 16)
(1, 6, 17)
(1, 6, 18)
(1, 7, 8)
(1, 7, 9)
(1, 7, 10)
(1, 7, 11)
(1, 7, 12)
(1, 7, 13)
(1, 7, 14)
(1, 7, 15)
(1, 7, 16)
(1, 7, 17)
(1, 7, 18)
(1, 8, 9)
(1, 8, 10)
(1, 8, 11)
(1, 8, 12)
(1, 8, 13)
(1, 8, 14)
(1, 8, 15)
(1, 8, 16)
(1, 8, 17)
(1, 8, 18)
(1, 9, 10)
(1, 9, 11)
(1, 9, 12)
(1, 9, 13)
(1, 9, 14)
(1, 9, 15)
(1, 9, 16)
(1, 9, 17)
(1, 9, 18)
(1, 10, 11)
(1, 10, 12)
(1, 10, 13)
(1, 10, 14)
(1, 10, 15)
(1, 10, 16)
(1, 10, 17)
(1, 10, 18)
(1, 11, 12)
(1, 11, 13)
(1, 11, 14)
(1, 11, 15)
(1, 11, 16)
(1, 11, 17)
(1, 11, 18)
(1, 12, 13)
(1, 12, 14)
(1, 12, 15)
(1, 12, 16)
(1, 12, 17)
(1, 12, 18)
(1, 13, 14)
(1, 13, 15)
(1, 13, 16)
(1, 13, 17)
(1, 13, 18)
(1, 14, 15)
(1, 14, 16)
(1, 14, 17)
(1, 14, 18)
(1, 15, 16)
(1, 15, 17)
(1, 15, 18)
(1, 16, 17)
(1, 16, 18)
(1, 17, 18)
(2, 3, 4)
(2, 3, 5)
(2, 3, 6)
(2, 3, 7)
(2, 3, 8)
(2, 3, 9)
(2, 3, 10)
(2, 3, 11)
(2, 3, 12)
(2, 3, 13)
(2, 3, 14)
(2, 3, 15)
(2, 3, 16)
(2, 3, 17)
(2, 3, 18)
(2, 4, 5)
(2, 4, 6)
(2, 4, 7)
(2, 4, 8)
(2, 4, 9)
(2, 4, 10)
(2, 4, 11)
(2, 4, 12)
(2, 4, 13)
(2, 4, 14)
(2, 4, 15)
(2, 4, 16)
(2, 4, 17)
(2, 4, 18)
(2, 5, 6)
(2, 5, 7)
(2, 5, 8)
(2, 5, 9)
(2, 5, 10)
(2, 5, 11)
(2, 5, 12)
(2, 5, 13)
(2, 5, 14)
(2, 5, 15)
(2, 5, 16)
(2, 5, 17)
(2, 5, 18)
(2, 6, 7)
(2, 6, 8)
(2, 6, 9)
(2, 6, 10)
(2, 6, 11)
(2, 6, 12)
(2, 6, 13)
(2, 6, 14)
(2, 6, 15)
(2, 6, 16)
(2, 6, 17)
(2, 6, 18)
(2, 7, 8)
(2, 7, 9)
(2, 7, 10)
(2, 7, 11)
(2, 7, 12)
(2, 7, 13)
(2, 7, 14)
(2, 7, 15)
(2, 7, 16)
(2, 7, 17)
(2, 7, 18)
(2, 8, 9)
(2, 8, 10)
(2, 8, 11)
(2, 8, 12)
(2, 8, 13)
(2, 8, 14)
(2, 8, 15)
(2, 8, 16)
(2, 8, 17)
(2, 8, 18)
(2, 9, 10)
(2, 9, 11)
(2, 9, 12)
(2, 9, 13)
(2, 9, 14)
(2, 9, 15)
(2, 9, 16)
(2, 9, 17)
(2, 9, 18)
(2, 10, 11)
(2, 10, 12)
(2, 10, 13)
(2, 10, 14)
(2, 10, 15)
(2, 10, 16)
(2, 10, 17)
(2, 10, 18)
(2, 11, 12)
(2, 11, 13)
(2, 11, 14)
(2, 11, 15)
(2, 11, 16)
(2, 11, 17)
(2, 11, 18)
(2, 12, 13)
(2, 12, 14)
(2, 12, 15)
(2, 12, 16)
(2, 12, 17)
(2, 12, 18)
(2, 13, 14)
(2, 13, 15)
(2, 13, 16)
(2, 13, 17)
(2, 13, 18)
(2, 14, 15)
(2, 14, 16)
(2, 14, 17)
(2, 14, 18)
(2, 15, 16)
(2, 15, 17)
(2, 15, 18)
(2, 16, 17)
(2, 16, 18)
(2, 17, 18)
(3, 4, 5)
(3, 4, 6)
(3, 4, 7)
(3, 4, 8)
(3, 4, 9)
(3, 4, 10)
(3, 4, 11)
(3, 4, 12)
(3, 4, 13)
(3, 4, 14)
(3, 4, 15)
(3, 4, 16)
(3, 4, 17)
(3, 4, 18)
(3, 5, 6)
(3, 5, 7)
(3, 5, 8)
(3, 5, 9)
(3, 5, 10)
(3, 5, 11)
(3, 5, 12)
(3, 5, 13)
(3, 5, 14)
(3, 5, 15)
(3, 5, 16)
(3, 5, 17)
(3, 5, 18)
(3, 6, 7)
(3, 6, 8)
(3, 6, 9)
(3, 6, 10)
(3, 6, 11)
(3, 6, 12)
(3, 6, 13)
(3, 6, 14)
(3, 6, 15)
(3, 6, 16)
(3, 6, 17)
(3, 6, 18)
(3, 7, 8)
(3, 7, 9)
(3, 7, 10)
(3, 7, 11)
(3, 7, 12)
(3, 7, 13)
(3, 7, 14)
(3, 7, 15)
(3, 7, 16)
(3, 7, 17)
(3, 7, 18)
(3, 8, 9)
(3, 8, 10)
(3, 8, 11)
(3, 8, 12)
(3, 8, 13)
(3, 8, 14)
(3, 8, 15)
(3, 8, 16)
(3, 8, 17)
(3, 8, 18)
(3, 9, 10)
(3, 9, 11)
(3, 9, 12)
(3, 9, 13)
(3, 9, 14)
(3, 9, 15)
(3, 9, 16)
(3, 9, 17)
(3, 9, 18)
(3, 10, 11)
(3, 10, 12)
(3, 10, 13)
(3, 10, 14)
(3, 10, 15)
(3, 10, 16)
(3, 10, 17)
(3, 10, 18)
(3, 11, 12)
(3, 11, 13)
(3, 11, 14)
(3, 11, 15)
(3, 11, 16)
(3, 11, 17)
(3, 11, 18)
(3, 12, 13)
(3, 12, 14)
(3, 12, 15)
(3, 12, 16)
(3, 12, 17)
(3, 12, 18)
(3, 13, 14)
(3, 13, 15)
(3, 13, 16)
(3, 13, 17)
(3, 13, 18)
(3, 14, 15)
(3, 14, 16)
(3, 14, 17)
(3, 14, 18)
(3, 15, 16)
(3, 15, 17)
(3, 15, 18)
(3, 16, 17)
(3, 16, 18)
(3, 17, 18)
(4, 5, 6)
(4, 5, 7)
(4, 5, 8)
(4, 5, 9)
(4, 5, 10)
(4, 5, 11)
(4, 5, 12)
(4, 5, 13)
(4, 5, 14)
(4, 5, 15)
(4, 5, 16)
(4, 5, 17)
(4, 5, 18)
(4, 6, 7)
(4, 6, 8)
(4, 6, 9)
(4, 6, 10)
(4, 6, 11)
(4, 6, 12)
(4, 6, 13)
(4, 6, 14)
(4, 6, 15)
(4, 6, 16)
(4, 6, 17)
(4, 6, 18)
(4, 7, 8)
(4, 7, 9)
(4, 7, 10)
(4, 7, 11)
(4, 7, 12)
(4, 7, 13)
(4, 7, 14)
(4, 7, 15)
(4, 7, 16)
(4, 7, 17)
(4, 7, 18)
(4, 8, 9)
(4, 8, 10)
(4, 8, 11)
(4, 8, 12)
(4, 8, 13)
(4, 8, 14)
(4, 8, 15)
(4, 8, 16)
(4, 8, 17)
(4, 8, 18)
(4, 9, 10)
(4, 9, 11)
(4, 9, 12)
(4, 9, 13)
(4, 9, 14)
(4, 9, 15)
(4, 9, 16)
(4, 9, 17)
(4, 9, 18)
(4, 10, 11)
(4, 10, 12)
(4, 10, 13)
(4, 10, 14)
(4, 10, 15)
(4, 10, 16)
(4, 10, 17)
(4, 10, 18)
(4, 11, 12)
(4, 11, 13)
(4, 11, 14)
(4, 11, 15)
(4, 11, 16)
(4, 11, 17)
(4, 11, 18)
(4, 12, 13)
(4, 12, 14)
(4, 12, 15)
(4, 12, 16)
(4, 12, 17)
(4, 12, 18)
(4, 13, 14)
(4, 13, 15)
(4, 13, 16)
(4, 13, 17)
(4, 13, 18)
(4, 14, 15)
(4, 14, 16)
(4, 14, 17)
(4, 14, 18)
(4, 15, 16)
(4, 15, 17)
(4, 15, 18)
(4, 16, 17)
(4, 16, 18)
(4, 17, 18)
(5, 6, 7)
(5, 6, 8)
(5, 6, 9)
(5, 6, 10)
(5, 6, 11)
(5, 6, 12)
(5, 6, 13)
(5, 6, 14)
(5, 6, 15)
(5, 6, 16)
(5, 6, 17)
(5, 6, 18)
(5, 7, 8)
(5, 7, 9)
(5, 7, 10)
(5, 7, 11)
(5, 7, 12)
(5, 7, 13)
(5, 7, 14)
(5, 7, 15)
(5, 7, 16)
(5, 7, 17)
(5, 7, 18)
(5, 8, 9)
(5, 8, 10)
(5, 8, 11)
(5, 8, 12)
(5, 8, 13)
(5, 8, 14)
(5, 8, 15)
(5, 8, 16)
(5, 8, 17)
(5, 8, 18)
(5, 9, 10)
(5, 9, 11)
(5, 9, 12)
(5, 9, 13)
(5, 9, 14)
(5, 9, 15)
(5, 9, 16)
(5, 9, 17)
(5, 9, 18)
(5, 10, 11)
(5, 10, 12)
(5, 10, 13)
(5, 10, 14)
(5, 10, 15)
(5, 10, 16)
(5, 10, 17)
(5, 10, 18)
(5, 11, 12)
(5, 11, 13)
(5, 11, 14)
(5, 11, 15)
(5, 11, 16)
(5, 11, 17)
(5, 11, 18)
(5, 12, 13)
(5, 12, 14)
(5, 12, 15)
(5, 12, 16)
(5, 12, 17)
(5, 12, 18)
(5, 13, 14)
(5, 13, 15)
(5, 13, 16)
(5, 13, 17)
(5, 13, 18)
(5, 14, 15)
(5, 14, 16)
(5, 14, 17)
(5, 14, 18)
(5, 15, 16)
(5, 15, 17)
(5, 15, 18)
(5, 16, 17)
(5, 16, 18)
(5, 17, 18)
(6, 7, 8)
(6, 7, 9)
(6, 7, 10)
(6, 7, 11)
(6, 7, 12)
(6, 7, 13)
(6, 7, 14)
(6, 7, 15)
(6, 7, 16)
(6, 7, 17)
(6, 7, 18)
(6, 8, 9)
(6, 8, 10)
(6, 8, 11)
(6, 8, 12)
(6, 8, 13)
(6, 8, 14)
(6, 8, 15)
(6, 8, 16)
(6, 8, 17)
(6, 8, 18)
(6, 9, 10)
(6, 9, 11)
(6, 9, 12)
(6, 9, 13)
(6, 9, 14)
(6, 9, 15)
(6, 9, 16)
(6, 9, 17)
(6, 9, 18)
(6, 10, 11)
(6, 10, 12)
(6, 10, 13)
(6, 10, 14)
(6, 10, 15)
(6, 10, 16)
(6, 10, 17)
(6, 10, 18)
(6, 11, 12)
(6, 11, 13)
(6, 11, 14)
(6, 11, 15)
(6, 11, 16)
(6, 11, 17)
(6, 11, 18)
(6, 12, 13)
(6, 12, 14)
(6, 12, 15)
(6, 12, 16)
(6, 12, 17)
(6, 12, 18)
(6, 13, 14)
(6, 13, 15)
(6, 13, 16)
(6, 13, 17)
(6, 13, 18)
(6, 14, 15)
(6, 14, 16)
(6, 14, 17)
(6, 14, 18)
(6, 15, 16)
(6, 15, 17)
(6, 15, 18)
(6, 16, 17)
(6, 16, 18)
(6, 17, 18)
(7, 8, 9)
(7, 8, 10)
(7, 8, 11)
(7, 8, 12)
(7, 8, 13)
(7, 8, 14)
(7, 8, 15)
(7, 8, 16)
(7, 8, 17)
(7, 8, 18)
(7, 9, 10)
(7, 9, 11)
(7, 9, 12)
(7, 9, 13)
(7, 9, 14)
(7, 9, 15)
(7, 9, 16)
(7, 9, 17)
(7, 9, 18)
(7, 10, 11)
(7, 10, 12)
(7, 10, 13)
(7, 10, 14)
(7, 10, 15)
(7, 10, 16)
(7, 10, 17)
(7, 10, 18)
(7, 11, 12)
(7, 11, 13)
(7, 11, 14)
(7, 11, 15)
(7, 11, 16)
(7, 11, 17)
(7, 11, 18)
(7, 12, 13)
(7, 12, 14)
(7, 12, 15)
(7, 12, 16)
(7, 12, 17)
(7, 12, 18)
(7, 13, 14)
(7, 13, 15)
(7, 13, 16)
(7, 13, 17)
(7, 13, 18)
(7, 14, 15)
(7, 14, 16)
(7, 14, 17)
(7, 14, 18)
(7, 15, 16)
(7, 15, 17)
(7, 15, 18)
(7, 16, 17)
(7, 16, 18)
(7, 17, 18)
(8, 9, 10)
(8, 9, 11)
(8, 9, 12)
(8, 9, 13)
(8, 9, 14)
(8, 9, 15)
(8, 9, 16)
(8, 9, 17)
(8, 9, 18)
(8, 10, 11)
(8, 10, 12)
(8, 10, 13)
(8, 10, 14)
(8, 10, 15)
(8, 10, 16)
(8, 10, 17)
(8, 10, 18)
(8, 11, 12)
(8, 11, 13)
(8, 11, 14)
(8, 11, 15)
(8, 11, 16)
(8, 11, 17)
(8, 11, 18)
(8, 12, 13)
(8, 12, 14)
(8, 12, 15)
(8, 12, 16)
(8, 12, 17)
(8, 12, 18)
(8, 13, 14)
(8, 13, 15)
(8, 13, 16)
(8, 13, 17)
(8, 13, 18)
(8, 14, 15)
(8, 14, 16)
(8, 14, 17)
(8, 14, 18)
(8, 15, 16)
(8, 15, 17)
(8, 15, 18)
(8, 16, 17)
(8, 16, 18)
(8, 17, 18)
(9, 10, 11)
(9, 10, 12)
(9, 10, 13)
(9, 10, 14)
(9, 10, 15)
(9, 10, 16)
(9, 10, 17)
(9, 10, 18)
(9, 11, 12)
(9, 11, 13)
(9, 11, 14)
(9, 11, 15)
(9, 11, 16)
(9, 11, 17)
(9, 11, 18)
(9, 12, 13)
(9, 12, 14)
(9, 12, 15)
(9, 12, 16)
(9, 12, 17)
(9, 12, 18)
(9, 13, 14)
(9, 13, 15)
(9, 13, 16)
(9, 13, 17)
(9, 13, 18)
(9, 14, 15)
(9, 14, 16)
(9, 14, 17)
(9, 14, 18)
(9, 15, 16)
(9, 15, 17)
(9, 15, 18)
(9, 16, 17)
(9, 16, 18)
(9, 17, 18)
(10, 11, 12)
(10, 11, 13)
(10, 11, 14)
(10, 11, 15)
(10, 11, 16)
(10, 11, 17)
(10, 11, 18)
(10, 12, 13)
(10, 12, 14)
(10, 12, 15)
(10, 12, 16)
(10, 12, 17)
(10, 12, 18)
(10, 13, 14)
(10, 13, 15)
(10, 13, 16)
(10, 13, 17)
(10, 13, 18)
(10, 14, 15)
(10, 14, 16)
(10, 14, 17)
(10, 14, 18)
(10, 15, 16)
(10, 15, 17)
(10, 15, 18)
(10, 16, 17)
(10, 16, 18)
(10, 17, 18)
(11, 12, 13)
(11, 12, 14)
(11, 12, 15)
(11, 12, 16)
(11, 12, 17)
(11, 12, 18)
(11, 13, 14)
(11, 13, 15)
(11, 13, 16)
(11, 13, 17)
(11, 13, 18)
(11, 14, 15)
(11, 14, 16)
(11, 14, 17)
(11, 14, 18)
(11, 15, 16)
(11, 15, 17)
(11, 15, 18)
(11, 16, 17)
(11, 16, 18)
(11, 17, 18)
(12, 13, 14)
(12, 13, 15)
(12, 13, 16)
(12, 13, 17)
(12, 13, 18)
(12, 14, 15)
(12, 14, 16)
(12, 14, 17)
(12, 14, 18)
(12, 15, 16)
(12, 15, 17)
(12, 15, 18)
(12, 16, 17)
(12, 16, 18)
(12, 17, 18)
(13, 14, 15)
(13, 14, 16)
(13, 14, 17)
(13, 14, 18)
(13, 15, 16)
(13, 15, 17)
(13, 15, 18)
(13, 16, 17)
(13, 16, 18)
(13, 17, 18)
(14, 15, 16)
(14, 15, 17)
(14, 15, 18)
(14, 16, 17)
(14, 16, 18)
(14, 17, 18)
(15, 16, 17)
(15, 16, 18)
(15, 17, 18)
(16, 17, 18)
816


k=4时，所有可能的析合范式为3060个，下面是Python的实现代码

result=0
for a1 in range(1,16):#这里16和循环次数相加就等于20
for a2 in range((a1+1),19):
for a3 in range((a2+1),19):
for a4  in range((a3  + 1), 19):
print((a1 ,a2 ,a3 ,a4 ))
result=result+1

print(result)



k=0是，空集（个数仍为1）
k=1时，result=18
k=2时，result=152
k=3时，result=816
k=4时，result=3060
k=5时，result=8568
k=6时，，result=18564
k=7时，，result=31824
k=8时，，result=43758
k=9时，，result=48620
k=10时，，result=43758
k=11时，，result=31824
k=12时，，result=18564
k=13时，，result=8568
k=14时，，result=3060
k=15时，，result=816
k=16时，，result=152
k=17时，，result=18
k=18时，，result=1

sum (k,(0,18))=

1.这里并没有考虑k=2的析合范式（1,1）即a1b1c1∨a1b1c1因为它和单个合取式（1）←→a1b1c1，是等价

2.（i，j,）<==>(j,i)是等价的,其中i，j∈（1,2,3，…,17,18)，比如(1,2)(2,1)
3.又如：k=6的一种析合范式（1,2,2,3,4,4）←→k=4 的析合范式(1,2,3,4)是等价的
4,(1,2,3),(1,3,2)是等价的，所以左边的元素不要大于右边的元素，始终让他们处于自然排序。

[^1] 这里我原本用值域一词，可我考虑用映射也挺合适，因为从集合[(1,1),(1,2),(1,3),…,(5,3),(5,4),(5,5)]能看出映射S⊗S→S来，那为什么还叫它值域呢，就叫他映射吧。

09-13 6182

10-07 564
07-28 2万+
01-06 232
11-05 706
09-24 3558
06-17 4915
12-29 1101
09-06 3743
12-12 1810
06-10 5655
06-11 1625
08-04 1256