Hypergraph Neural Network, AAAI, 2019.
Feng Y, You H, Zhang Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 3558-3565.
本文提出的HGNN将复杂数据相关性表述为超图结构,并设计了超边卷积操作,以更好地利用高阶数据相关性进行表示学习。更具体地说,HGNN是一个通用框架,它可以合并多模态数据和复杂的数据相关性。传统的图卷积神经网络可以看作是HGNN的一个特例。为了评估提出的HGNN框架的性能,进行了引文网络分类和视觉对象识别任务的实验。在4个数据集上的实验结果以及与图卷积网络(GCN)等传统方法的比较表明,HGNN具有更好的性能。这些结果表明,本文提出的HGNN方法在学习使用高阶复杂关联表示的数据时更加有效。
本文创新点如下:
- 提出一个超图神经网络框架,即HGNN,用于使用超图结构进行表示学习。HGNN能够通过其超图结构表达复杂的、高阶的数据相关性。并且使用超边卷积操作有效地处理多模态数据/特征。此外,GCN (Kipf和Welling 2017)可以看作是HGNN的一种特殊情况,其简单图中的边可以看作是仅连接两个顶点的2阶超边。
- 该模型在引文网络分类和视觉对象分类任务方面进行了广泛的实验。与最先进的方法的比较证明了所提出的HGNN框架的有效性。实验表明,该方法在处理多模态数据时具有较好的性能。