Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis. MICCAI, 2020

Gadgil等人提出了ST-GCN,一种结合时空信息的图卷积网络,用于rs-fMRI数据的分析,提升了预测年龄和性别的准确性。ST-GCN考虑了大脑区域间的功能依赖和时间动态,通过边重要性矩阵增强了模型的解释性。在HCP和NCANDA数据集上的实验表明,ST-GCN在预测任务上优于传统方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gadgil S, Zhao Q, Pfefferbaum A, et al. Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020: 528-538.

此篇论文中Gadgil等人提出了一种时空图卷积网络(ST-GCN),该网络通过分析基于神经成像的rs-fMRI数据实现了对参与者的年龄和性别的预测。

静息态功能磁共振成像(rs-fMRI)的血氧水平依赖信号记录了大脑内在功能网络的时间动态。然而,现有的用于rs-fMRI的深度学习方法要么忽略了网络中不同脑区之间的功能依赖关系,要么忽略了大脑活动的时间动态信息。为了克服这些缺点,我们建议在时空图的背景下构建功能连接网络。我们在fMRI时间序列的短子序列上训练了一个时空图卷积网络(ST-GCN),以模拟功能连通性的非平稳性质。同时,该模型了解了ST-GCN中图边的重要性,以深入了解有助于预测的功能性连接。在分析人类连接体项目(HCP, N = 1091)和国家青少年酒精和神经发育数据(NCANDA, N = 773)的rs-fMRI时,ST-GCN在基于大脑信号预测性别和年龄方面明显比普通方法更准确。

用ST-GCN对时间序列进行分类:我们提出的ST-GCN由3层ST-GC单元组成。ST-GCN的输入为1通道时空特征f∈RN×T,表示N个roi的平均信号。每个ST-G

评论 85
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值