Gadgil S, Zhao Q, Pfefferbaum A, et al. Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020: 528-538.
此篇论文中Gadgil等人提出了一种时空图卷积网络(ST-GCN),该网络通过分析基于神经成像的rs-fMRI数据实现了对参与者的年龄和性别的预测。
静息态功能磁共振成像(rs-fMRI)的血氧水平依赖信号记录了大脑内在功能网络的时间动态。然而,现有的用于rs-fMRI的深度学习方法要么忽略了网络中不同脑区之间的功能依赖关系,要么忽略了大脑活动的时间动态信息。为了克服这些缺点,我们建议在时空图的背景下构建功能连接网络。我们在fMRI时间序列的短子序列上训练了一个时空图卷积网络(ST-GCN),以模拟功能连通性的非平稳性质。同时,该模型了解了ST-GCN中图边的重要性,以深入了解有助于预测的功能性连接。在分析人类连接体项目(HCP, N = 1091)和国家青少年酒精和神经发育数据(NCANDA, N = 773)的rs-fMRI时,ST-GCN在基于大脑信号预测性别和年龄方面明显比普通方法更准确。
用ST-GCN对时间序列进行分类:我们提出的ST-GCN由3层ST-GC单元组成。ST-GCN的输入为1通道时空特征f∈RN×T,表示N个roi的平均信号。每个ST-G