【应用数学】动态最优化:合集

本文详细探讨了动态最优化中的线性差分方程,包括一阶和二阶系统的稳定性分析,并延伸至随机差分方程的理论和应用,涉及脉冲响应函数、二次型的几何和、不变子空间方法等。同时涵盖了动态规划和二次规划在最优控制问题中的应用,解析了相关算法和欧拉方程。最后讨论了微分动力系统及卡尔曼滤波等内容,为理解动态系统提供全面指导。
摘要由CSDN通过智能技术生成

200731经过长时间的打公式终于把这个系列更新完毕了。本篇是动态最优化的一个合集,欲看章节可以进入此目录查看~


1. 确定性差分方程

1.1 一阶线性差分方程

x t = a x t − 1 + b t x_t = ax_{t-1} + b_t xt=axt1+bt

1.1.1 齐次方程
  • 对于齐次方程

x t = a x t − 1 x_t = ax_{t-1} xt=axt1

  • 有稳定性结论
    (1)当 0 < a < 1 0 < a < 1 0<a<1 时,解单调收敛 x = 0 x = 0 x=0,均衡点是稳定的;
    (2)当 − 1 < a < 0 -1 < a < 0 1<a<0 时,解振荡收敛 x = 0 x = 0 x=0,均衡点是稳定的
    (3)当 a > 1 a > 1 a>1 时,单调发散到无穷大,均衡点不稳定;
    (4)当 a < − 1 a < -1 a<1 时,振荡发散到无穷大,均衡点不稳定。
1.1.2 非齐次自治方程
  • 设方程中 b t b_t bt为常数序列,则解为

x t g = x ˉ + c a t x_t^g = \bar{x} + ca^t xtg=xˉ+cat

  • 有稳定性结论
    (1)当 ∣ a ∣ < 1 | a | < 1 a<1 时,对任意 c c c,方程的解收敛到均衡点,均衡点是稳定的。
    (2)当 ∣ a ∣ > 1 | a | > 1 a>1 时,除去 c = 0 c = 0 c=0 外,方程的解不收敛到均衡点,均衡点是不稳定的。
    (3) a a a 的符号决定解是单调的还是振荡的。
1.1.3 非自治系统
  • 将其后向迭代得到解为

x t = a n x t − n + ∑ i = 0 n − 1 a i b t − i x_{t}=a^{n} x_{t-n}+\sum_{i=0}^{n-1} a^{i} b_{t-i} xt=anxtn+i=0n1aibti

  • ∣ a ∣ < 1 |a|<1 a<1后向解是稳定的,为

x t = c a t + ∑ i = 0 ∞ a i b t − i x_{t}=c a^{t}+\sum_{i=0}^{\infty} a^{i} b_{t-i} xt=cat+i=0aibti

  • ∣ a ∣ > 1 |a|>1 a>1前向解是稳定的,为

x t = c a t − 1 a ∑ i = 0 ∞ ( 1 a ) i b t + 1 + i x_{t}=c a^{t}-\frac{1}{a} \sum_{i=0}^{\infty}\left(\frac{1}{a}\right)^{i} b_{t+1+i} xt=cata1i=0(a1)ibt+1+i

1.2 二阶线性差分方程

x t + 2 = a x t + 1 + b x t + d t + 2 x_{t+2}=a x_{t+1}+b x_{t}+d_{t+2} xt+2=axt+1+bxt+dt+2

1.2.1 齐次系统

[ x t + 1 y t + 1 ] = [ 0 1 b a ] [ x t y t ] \left[\begin{array}{l}x_{t+1} \\ y_{t+1}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ b & a\end{array}\right]\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right] [xt+1yt+1]=[0b1a][xtyt]

  • A A A 的两个特征根和特征向量为 λ 1 , λ 2 , ( e 11 , e 12 ) ′ , ( e 21 , e 22 ) ′ \lambda_{1}, \lambda_{2},\left(e_{11}, e_{12}\right)^{\prime},\left(e_{21}, e_{22}\right)^{\prime} λ1,λ2,(e11,e12),(e21,e22)。作特征根分解,可得

[ x t y t ] = [ e 11 e 12 e 21 e x 2 ] [ c 1 λ 1 t c 2 λ 2 t ] \left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]=\left[\begin{array}{ll}e_{11} & e_{12} \\ e_{21} & e_{x 2}\end{array}\right]\left[\begin{array}{l}c_{1} \lambda_{1}^{t} \\ c_{2} \lambda_{2}^{t}\end{array}\right] [xtyt]=[e11e21e12ex2][c1λ1tc2λ2t]

  • 有结论
    (1)特征根为实根,如果所有特征根均小于 1,则收敛于均衡点。若有一个特征根绝对值大于1,则解发散,除非初始条件使该解为常数,出现鞍点情形。鞍点稳定要求一个特征根 1,另一特征根小于1。
    (2)特征根为复根,出现周期解;
    (3)重根和不能对角化的系统较复杂。
1.2.2 非齐次自治系统
  • 经变换可得

z t + 1 = A z t + b z_{t+1}=A z_{t}+b zt+1=Azt+b

  • 其解为

[ x t y t ] = [ e 11 e 12 e 21 e 22 ] [ c 1 λ 1 t c 2 λ 2 f ] + [ x ˉ y ˉ ] \left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]=\left[\begin{array}{ll}e_{11} & e_{12} \\ e_{21} & e_{22}\end{array}\right]\left[\begin{array}{l}c_{1} \lambda_{1}^{t} \\ c_{2} \lambda_{2}^{\mathrm{f}}\end{array}\right]+\left[\begin{array}{l}\bar{x} \\ \bar{y}\end{array}\right] [xtyt]=[e11e21e12e22][c1λ1tc2λ2f]+[xˉyˉ]

  • 稳定性结论:
    (1)两个特征根模长均小于 1,则均衡点稳定;
    (2) 两个特征根模长均大于 1,则均衡点不稳定,仅在 c 1 = 0 c_1 = 0 c1=0 c 2 = 0 c_2 = 0 c2=0 时初始就在均衡点;
    (3)特征根一个大于 1,另一特征根小于 1(不妨设第二个特征根大于 1),则大多数时间下不稳定,当且仅当 c 2 = 0 c_2 = 0 c2=0 时是鞍点稳定的,此时鞍点路径为

x t − x ˉ = e 11 e 12 ( y t − y ˉ ) x_{t}-\bar{x}=\frac{e_{11}}{e_{12}}\left(y_{t}-\bar{y}\right) xtxˉ=e12e11(ytyˉ)

1.2.3 非线性动态系统
  • 考虑下面的系统

x t = f ( x t − 1 , y t − 1 ) y t = g ( x t − 1 , y t − 1 ) x_{t}=f\left(x_{t-1}, y_{t-1}\right)\\ y_{t}=g\left(x_{t-1}, y_{t-1}\right) xt=f(xt1,yt1)yt=g(xt1,yt1)

  • 均衡点

x ˉ = f ( x ˉ , y ˉ ) y ˉ = g ( x ˉ , y ˉ ) \bar{x}=f(\bar{x}, \bar{y})\\ \bar{y}=g(\bar{x}, \bar{y}) xˉ=f(xˉ,yˉ)yˉ=g(xˉ,yˉ)

  • 将其在均衡点附近作一阶展开并局部线性化,得到式

x i + 1 − x ˉ = f x ( x ˉ , y ˉ ) ( x i − x ˉ ) + f y ( x ˉ , y ˉ ) ( y t − y ˉ ) y t + 1 − y ˉ = g x ( x ˉ , y ˉ ) ( x t − x ˉ ) + g y ( x ˉ , y ˉ ) ( y t − y ˉ ) x_{i+1}-\bar{x}=f_{x}(\bar{x}, \bar{y})\left(x_{i}-\bar{x}\right)+f_{y}(\bar{x}, \bar{y})\left(y_{t}-\bar{y}\right)\\ y_{t+1}-\bar{y}=g_{x}(\bar{x}, \bar{y})\left(x_{t}-\bar{x}\right)+g_{y}(\bar{x}, \bar{y})\left(y_{t}-\bar{y}\right) xi+1xˉ=fx(xˉ,yˉ)(xixˉ)+fy(xˉ,yˉ)(ytyˉ)yt+1yˉ=gx(xˉ,yˉ)(xtxˉ)+gy(xˉ,yˉ)(ytyˉ)

  • 记其系数矩阵 A A A

A = [ f x f y g x g y ] A=\left[\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right] A=[fxgxfygy]

  • 稳定性结论:
    (1)两个特征根模均小于1,则均衡点稳定;
    (2)两个特征根模均大于1,则均衡点不稳定,仅在 c 1 = 0 c_1 = 0 c1=0 c 2 = 0 c_2 = 0 c2=0 时初始就在均衡点;
    (3)特征根一个大于 1,另一特征根小于 1(不妨设第二个特征根大于 1),则大多数时间下不稳定,当且仅当 c 2 = 0 c_2 = 0 c2=0 时是鞍点稳定的。

2. 随机差分方程

2.1 随机差分方程

  • 假定初始分 M M M π 0 ( x 0 ) ∼ N ( u 0 , ∑ 0 ) , π ( x ′ ∣ x ) ∼ N ( A 0 x , C C ′ ) \pi_{0}\left(x_{0}\right) \sim N\left(u_{0}, \sum_{0}\right), \quad \pi\left(x^{\prime} \mid x\right) \sim N\left(A_{0} x, C C^{\prime}\right) π0(x0)N(u0,0),π(xx)N(A0x,CC) ,差分方程
    x t + 1 = A 0 x t + C ω t + 1 x_{t+1}=A_{0} x_{t}+C \omega_{t+1} xt+1=A0xt+Cωt+1
    其中 x t x_t xt是一个 n × 1 n×1 n×1 的状态向量, x 0 x_0 x0 是一个给定的初始状态, A 0 A_0 A0 是一个 n × n n×n n×n 矩阵, C C C 是一个 n × m n ×m n×m 矩阵, ω t + 1 \omega_{t+1} ωt+1是一个 m × 1 m×1 m×1 的随机向量,且有假定

  • 假定A1 ω t + 1 ∼ N ( 0 , 1 ) , i . i . d . \omega_{t+1} \sim \mathrm{N}(0,1), i . i .d. ωt+1N(0,1),i.i.d.
    假定A2 E ω t + 1 ∣ J t = 0 , E ω t + 1 ω t + 1 ′ ∣ J t = 0 E \omega_{t+1} \mid J_{t}=0,E \omega_{t+1}\omega_{t+1}^\prime \mid J_{t}=0 Eωt+1Jt=0,Eωt+1ωt+1Jt=0
    假定A3足此条件的为白噪声 E ω t + 1 = 0 E \omega_{t+1}=0 Eωt+1=0
    E ω t ω t j ′ = { I , j = 0 0 , j ≠ 0 E \omega_{t} \omega_{t j}^{\prime}=\left\{\begin{array}{l}I, j=0 \\ 0, j \neq 0\end{array}\right. Eωtωtj={ I,j=00,j=0

  • 加入观测系统
    x t + 1 = A 0 x t + C ω t + 1 y t = G x t \begin{array}{l}x_{t+1}=A_{0} x_{t}+C \omega_{t+1} \\ y_{t}=G x_{t}\end{array} xt+1=A0xt+Cωt+1yt=Gxt

定义 一个实值方阵 A A A稳定的,如果 A A A 所有特征值实部都严格小于 1。

  • 假定系统有如下的特殊形式,其中 A ~ \tilde{A} A~是稳定的。
    [ x 1 , t + 1 x 2 , t + 1 ] = [ 1 0 0 A ~ ] [ x 1 , t x 2 , t ] + [ 0 c ˉ ] ω t + 1 \left[\begin{array}{c}x_{1, t+1} \\ x_{2, t+1}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & \tilde{A}\end{array}\right]\left[\begin{array}{c}x_{1, t} \\ x_{2, t}\end{array}\right]+\left[\begin{array}{c}0 \\ \bar{c}\end{array}\right] \omega_{t+1} [x1,t+1x2,t+1]=[100A~][x1,tx2,t]+[0cˉ]ωt+1
    则下面任何条件都保证存在一个初始条件,使 x t x_t xt协方差平稳的。

  • 条件 A1 A A A 所有特征值都严格小于 1。
    条件 A2 状态空间有如上的特殊形式且 A ~ \tilde{A} A~所有特征值的模严格小于 1。

  • 取期望,
    μ t + 1 = A 0 μ t C x ( 0 ) = E ( x t − μ ) ( x t − μ ) ′ = A 0 C x ( 0 ) A 0 ′ + C C ′ \begin{array}{c}\mu_{t+1}=A_{0} \mu_{t} \\ C_{x}(0)=E\left(x_{t}-\mu\right)\left(x_{t}-\mu\right)^{\prime}=A_{0} C_{x}(0) A_{0}^{\prime}+C C^{\prime}\end{array} μt+1=A0μtCx(0)=E(xtμ)(xtμ)=A0Cx(0)A0+CC

  • 自协方差序列满足
    C x ( j ) = E ( x t + j − μ ) ( x t − μ ) ′ = A 0 j C x ( 0 ) C_{x}(j)=E\left(x_{t+j}-\mu\right)\left(x_{t}-\mu\right)^{\prime}=A_{0}^{j} C_{x}(0) Cx(j)=E(xt+jμ)(xtμ)=A0jCx(0)

  • 加入观测方程
    E ( y t + j − μ y ) ( x t − μ y

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值