【计算机科学与技术】信息论笔记(2): 渐近均分性

本文介绍了信息论中的渐近均分性定理,阐述了信源分布等概时信息熵的最大化原理。通过典型集的概念,说明了序列中符号出现频数接近概率的性质。此外,还探讨了数据压缩的原理,指出通过编码可以有效地表示序列,平均码长接近信息熵。最后,讨论了高概率集与典型集的关系,展示了在概率意义上,高概率集的元素数量与典型集相似。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

200731本篇是学习信息论的入门笔记,希望能与各位分享进步!这是第二章:渐近均分性~

2. 渐进均分性

2.1 渐进均分性定理

  • 信息符号冗余度:冗余度高,符号携带的信息率低,易于压缩;

  • 信源的冗余编码:提高单个信息符号所携带的信息量。

  • 渐进等同分割性(Asymptotic Equipartition Property)结论:信源分布等概,信息熵最大。

  • 定理2.1.1(渐进均分性):设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 是概率密度函数为p(x)的独立同分布(i.i.d)的随机变量,则
    − 1 n log ⁡ p ( X 1 , X 2 , ⋯   , X n ) → H ( X ) -\frac{1}{n} \log p\left(X_{1}, X_{2}, \cdots, X_{n}\right) \rightarrow H(X) n1logp(X1,X2,,Xn)H(X)

  • 直观解释:当序列足够长时,一部分序列就显现出这样的性质:**序列中各个符号的出现频数非常接近于各自的出现概率,而这些序列的概率则趋近于相等,且它们的和非常接近于1,这些序列就称为典型序列。**其余的非典型序列的出现概率之和接近于零。

香农在1948年的《通信的数学理论》中注意到它并表述为一个定理。后来麦克米伦在1953年发表的《信息论的基本定理》一文中严格地证明了这一结果。

  • 定义2.1.1(典型集):设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 是概率密度函数为 p ( x ) p(x) p(x)的i.i.d随机序列,如果联合分布 p ( x 1 , x 2 , … , x n ) p(x_1, x_2,… ,x_n) p(x1,x2,,xn)满足下列条件:
    ∣ log ⁡ p ( x 1 , x 2 , ⋯   , x n ) n + H ( X ) ∣ ≤ ε \left|\frac{\log p\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{n}+H(X)\right| \leq \varepsilon nlogp(x1,x2,,xn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值