【计算机科学与技术】信息论笔记(8):率失真理论

200804本篇是学习信息论的入门笔记,希望能与各位分享进步!这是第八章:率失真理论~

8. 率失真理论

  • 离散信源的有损压缩:信道描述 Q = ( q ( b j ∣ a K ) ) K × J Q=(q(b_j | a_K))_{K\times J} Q=(q(bjaK))K×J
  • 连续信源:输出消息在时间和取值上都连续的信源。

8.1 量化

  • 量化分类:标量量化矢量量化

    • 标量量化:每个信源输出分别量化。
    • 标量量化划分:均匀量化(量化区域等长)和非均匀量化(量化区域可以不等长)。
    • 矢量量化:对信源输出组合进行整体量化。
  • 定义8.1.1(标量量化):仅考虑一个采样点的量化问题。将一个连续幅度值转变成离散幅度值(有限个值) x ^ = Q ( x ) \hat{x}=Q(x) x^=Q(x) Δ i = d i − d i − 1 \Delta i = d_i - d_{i-1} Δi=didi1△i=di-di-1称为量化步长

  • 最优(Max-Lloyd)量化器:信源 X X X的概率密度为 p ( x ) p(x) p(x) x → x ^ x\to \hat{x} xx^,量化均方误差为
    D = E [ ( x − x ^ ) 2 ] = ∫ ( x − x ^ ) 2 p ( x ) d x = ∑ k = 1 K ∫ d k − 1 d k p ( x ) d x D = E[(x-\hat{x})^2] = \int (x-\hat{x})^2p(x)dx = \sum_{k=1}^K\int_{d_{k-1}}^{d_k}p(x)dx D=E[(xx^)2]=(xx^)2p(x)dx=k=1Kdk1dkp(x)dx
    为使 D D D最小,可得
    d k = 1 2 ( r k + r k + 1 ) , r k = ( ∫ d k − 1 d k x p ( x ) d x ) / ( ∫ d k − 1 d k p ( x ) d x ) d_k = \frac{1}{2}(r_k+r_{k+1}),r_k = (\int_{d_{k-1}}^{d_k}xp(x)dx)/(\int_{d_{k-1}}^{d_k}p(x)dx) dk=21(rk+rk+1),rk=(dk1dkxp(x)dx)/(dk1dkp(x)dx)
    代表值 r k r_k rk实际上是输入的概率密度函数在区间 [ d k − 1 , d k ] [d_{k-1}, d_k] [dk1,dk]上的中心矩;

  • 均匀量化器:假设信源的概率密度函数关于Y轴对称,仅考虑 x > 0 x>0 x>0的部分,量化间隔相等。量化值 r k = ( ( 2 k − 1 ) / 2 ) d r_k = ((2k-1)/2)d rk=((2k1)/2)d。目标:对给定概率密度函数 p ( x ) p(x) p(x)和量化分层数 K K K,可以确定 d d d,使失真最小。

    • 均匀量化失真:
      D = 2 ∑ k = 1 K / 2 − 1 ∫ ( k − 1 ) d k d ( 2 k − 1 2 d − x ) 2 p ( x ) d x + 2 ∫ ( K / 2 − 1 ) d ∞ ( K − 1 2 d − x ) 2 p ( x ) d x D=2 \sum_{k=1}^{K / 2-1} \int_{(k-1) d}^{k d}\left(\frac{2 k-1}{2} d-x\right)^{2} p(x) \mathrm{d} x+ 2 \int_{(K / 2-1) d}^{\infty}\left(\frac{K-1}{2} d-x\right)^{2} p(x) \mathrm{d} x D=2k=1K/21(k1)dkd(22k1d
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值