- 摘要:本博客记自学习Python入门知识(基础+语法+分支+循环)后,对优化素数代码算法的一些总结及体会。因尚未涉及后续Python高级知识,故最终代码算法效率仍不够优秀,请各位看官见谅。
1、素数基础算法
根据素数定义:一个大于1的自然数只能被1和它本身整除,即可利用for循环逐次计算,求解素数,代码如下:
# 计算 n 以内的所有素数
n = int(input('>>>')
for i in range(2,n+1):
for j in range(2,i):
if i % j == 0:
break
else:
print(i)
2、利用奇偶性质优化
根据偶数均可整除2性质,由此可知偶数均不是质数,故可优先排除偶数,现将代码优化如下:
n = int(input('>>>')
print(2)
for i in range(3,n+1,2):
for j in range(3,i,2):
if i % j == 0:
break
else:
print(i)
3、利用所有大于10的质数中,个位数只有1,3,7,9
根据所有大于10的所有奇数,但凡个位数为5的数字均可整除,故可利用此性质再次优化代码:
n = int(input('>>>')
print(2)
for i in range(3,n+1,2):
if i > 10 and i % 10 == 5:
continue
for j in range(3,i,2):
if i % j == 0:
break
else:
print(i)
4、利用素数平方根性质
假设整数m有一个比它的平方根m^(1/2)还要大的因数的话,即m=k1*k2,其中,k1>=m^(1/2)+1,则其另一个因数k2<=m^(1/2).因此,整数m的因数(如果有的话)只需循环至m的平方根即可,现将代码优化如下:
n = int(input('>>>')
print(2)
for i in range(3,n+1,2):
if i > 10 and i % 10 == 5:
continue
for j in range(3,int(i**0.5)+1,2):
if i % j == 0:
break
else:
print(i)
5、利用大于等于5的素数一定和6的倍数相邻性质
根据所有大于等于5的质数一定和6的倍数相邻性质,对整体代码进行调整:
n = int(input('>>>'))
lst = [2,3]
count = 0
for i in range(5,100,2):
if (i+1) % 6 == 0 or (i-1) % 6 == 0: #可能是素数
for j in range(5,int(i**0.5)+1,2):
if i % j == 0:
break
else:
count +=1
print(count)