在细菌中表达人胰岛素样生长因子I:使用优化的基因融合载体以促进蛋白质纯化...

研究背景

基于金黄色葡萄球菌蛋白A基因的融合载体的构建和使用以前已有描述。表达系统基于免疫球蛋白恒定区和金黄色葡萄球菌蛋白A之间的“伪免疫”相互作用。最近,系统得到了改进,证明了仅含两个(EE或EB)金黄色葡萄球菌蛋白A的五个(E, D, A, B和C)IgG结合域的融合蛋白在大肠杆菌的生长介质中分泌。在本研究中,我们比较了不同的细菌表达哺乳动物肽激素的系统,并基于合成的IgG结合域(Z)提出了一个优化版本。

研究主旨

本文介绍了一种优化的大肠杆菌表达系统,用于生产人胰岛素样生长因子I(IGF-I),通过构建融合蛋白,利用IgG亲和纯化技术进行有效纯化。研究中使用了三种不同的融合载体,分别含有不同数量的金黄色葡萄球菌蛋白A的IgG结合域,通过羟胺处理实现特异性裂解,释放出高活性的IGF-I。最终产品通过多种分析方法验证其生物活性和纯度。

研究特点

组装并比较了几种人胰岛素样生长因子I(IGF-I)基因与不同金黄色葡萄球菌蛋白A的IgG结合片段之间的融合,研究了肽激素的表达、分泌和纯化。从金黄色葡萄球菌或大肠杆菌的培养基中通过IgG亲和纯化融合蛋白后,通过羟胺裂解Asn-Gly肽键释放出原生IGF-I。基于修改后的合成IgG结合域(z),构建了一个优化的表达系统,该系统对羟胺具有抗性,从而获得了最高的融合蛋白产量。裂解后,激素可以通过第二次通过IgG亲和柱从IgG结合部分和未裂解的融合蛋白中分离出来。通过放射受体测定、N端序列分析、聚丙烯酰胺凝胶电泳、等电聚焦和高效液相色谱法确认了获得的IGF-I的生物活性和纯度。

文章出处 在细菌中表达人胰岛素样生长因子I:使用优化的基因融合载体以促进蛋白质纯化

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值