python
文章平均质量分 51
Jasmine0224
自学python、机器学习、深度学习
展开
-
SVM分类器算法总结&应用
1、SVM就是寻找最大分类间隔的过程,即使得数据点到分类超平面之间的距离最大化。2、SVM分类最初是为二分类设计,所以适合二分类问题,也可用于多分类,对多分类问题的处理有下面两种方式:(1)一对多法:假设要把数据集分为A、B、C、D 4个类,可以将其中一个类作为分类1,其他类作为分类2,这样我们要进行 4次SVM分类:类别1:A 类别2:B、C、D类别1:B 类别2:A、C、D类别1:C 类别2:A、B、D类别1:D 类别2:B原创 2020-12-13 18:41:43 · 3727 阅读 · 0 评论 -
朴素贝叶斯算法学习总结
1、朴素贝叶斯算法之朴素的含义:朴素是指假定数据的特征变量之间是相互独立的。2、朴素贝叶斯算法分类:将实例分类到后验概率最大的类别当中。假设实例数据有3个特征向量:{A1,A2,A3},Cj为分类当中的第j个类,后验概率的计算公式为:假设j的取值为0~n,那么计算出所有的P(Cj | A1A2A3),结果最大的所对应的分类即为实例的分类。比较后验概率大小的问题,也可以简化为比较P(A1A2A3 | Cj) P(Cj)的问题。3、朴素贝叶斯分类是计算实例属于各个分类的概率,最后给出最优的猜测分原创 2020-12-09 12:32:05 · 2233 阅读 · 2 评论 -
决策树ID3算法的原理与代码实现
1、决策树学习:决策树学习是利用递归的方法寻找最优特征,并根据最优特征将数据集分割,使得各个子数据集有一个最好的分类的过程。决策树是一个条件概率分布。构造决策树需要确定根节点、子节点和叶节点,通过寻找最优特征的方法来确定。2、如何寻找最优特征(特征选择)?通过计算经验熵和信息增益来确定:(1)经验熵:熵表示随机变量的不确定性,熵越大,不确定性就越大。(2)信息增益:特征A对训练集合D的信息增益为,集合D的经验熵减去特征A给定的条件下集合D的经验条件熵。以海洋生物数据为例,计算熵和信息增原创 2020-12-07 10:42:59 · 356 阅读 · 0 评论 -
sort,sorted的区别,sorted与operator.itemgetter使用
1、sort,sorted的区别:都是排序函数,sort用于list,而sorted用于list或者iterable(可迭代对象)2、operator.itemgetter(k)的使用:operator模块提供的itemgetter(k)函数用来获取对象的索引为k的数据,比如:a = [2, 6, 3, 7]b = operator.itemgetter(1)print(b(a))63、函数sorted(iterable, key, reverse):iterable可以是list,或者i原创 2020-12-06 23:49:42 · 232 阅读 · 2 评论