Python进阶----Fifth

本文深入探讨了Python序列协议的核心概念,包括__len__和__getitem__的实现,切片原理,动态属性存取,以及如何优化__eq__方法。通过具体代码示例,解释了如何创建自定义序列类,实现序列的动态属性访问,重载运算符,并讨论了继承内置类型时的注意事项。

1.序列协议

Python的序列协议只需实现__len__和__getitem__方法

首先创建一个 Ve类的升级版

class Ve:
    test = 'd'

    def __init__(self, components):
        self._components = array(self.test, components)

    def __iter__(self):
        return iter(self._components)

    def __repr__(self):
        components = reprlib.repr(self._components)           用于限制输出, 当元组个数大于6时
        components = components[components.find('['):-1]      其余部分用...代替
        return 'Ve({})'.format(components)                    参数的列表显示

    def __str__(self):
        return str(tuple(self))

    def __eq__(self, other):
        return tuple(self) == tuple(other)

    def __abs__(self):
        return math.sqrt(sum(x * x for x in self))            计算模长的函数

    def __bool__(self):
        return bool(abs(self))

    def __len__(self):
        return len(self._components)


obj = Ve([1, 2])
print(str(obj), repr(obj), len(obj), abs(obj))

(1.0, 2.0)   Ve([1.0, 2.0])   2   2.23606797749979

2.切片原理

设置切片功能

 	def __getitem__(self, index):
        cls = type(self)                            type(实例化对象) 获取实例所属的类
        if isinstance(index, slice):                如果参数为切片对象
            return cls(self._components[index])     调用类的构造方法,创建新实例化对象
        elif isinstance(index, numbers.Integral):   如果参数为整形索引,获取其值
            return self._components[index]
        else:
            msg = 'operate error'                   否则报错
            raise TypeError(msg)

obj = Ve([1, 2, 3, 4])
print(obj[1])
print(obj[1:3])
print(obj[1, 2])

2.0                                               
(2.0, 3.0)
TypeError: operate error
只有序列才有索引、切片等功能,而使用索引、切片时会默认调用类的__getitem__方法

3.动态存取属性

    names = 'xyzt'                                            在类中定义
    def __getattr__(self, name):
        ""
        动态获取属性,使 xyzt 4个分量分别获取对象的前4个元素数值
        ""

        cls = type(self)
        if len(name) == 1:
            pos = cls.names.find(name)                        获取参数的索引位置
            if 0 <= pos < len(self._components):              如果索引位置合法
                return self._components[pos]
        msg = '{.__name__!r} object has no attribute {!r}'
        return AttributeError(msg.format(cls, name))

    def __setattr__(self, name, value):
       ""
       禁止实例化对象属性值修改或添加新属性
       ""
       
        cls = type(self)
        if len(name) == 1:
            if name in cls.names:
                error = 'readonly attribute {attr_name!r}'
            elif name.islower():                                不允许添加新属性
                error = "can not set attributes 'a' to 'z' in {cls_name!r}"
            else:
                error = ''
            if error:
                msg = error.format(cls_name=cls.__name__, attr_name=name)
                raise AttributeError(msg)
        super().__setattr__(name, value)                       继承超类的setattr方法


obj = Ve([1, 2, 3, 4, 5])
print(obj.z)

3.0

小提示,为什么要有 setattr 方法

实际上, __getattr__方法是一种后备机制,仅当对象没有指定名称的属性时,python才会调用这个方法。
如果有像 obj.x = 10 这样的赋值后,则默认不会调用此函数,所以我们要禁止这种操作

4.优化__eq__方法

优点:减少处理时间和内存用量

代码

    def __eq__(self, other):
        return len(self) == len(other) and all(a ==b for a, b in zip(self, other))

        zip函数会在最短的操作数耗尽时停止,且支持多个对象--->zip(a, b, c)

5.setitem 方法

 完成参数的赋值
 def __setitem__(self, dict, key, value):
     self.dict[key] = value

知识点—判断类型

isinstance(x, numbers.Integral)   判断是否为整形
isinstance(x, numbers.Real)       判断是否为浮点数
isinstance(obj, Hashable)         判断对象是否可散列

6.继承

当我们需要继承内置类型如 List, Dict时, 不要直接继承

1.内置类型dict的__init__和__update__方法会忽略我们覆盖的__setitem__方法
2.dict.update方法会忽略我们覆盖的__getitem__方法 
3.需要继承时我们通常选择collections.UserList, UserDict
4.实际上, 所有关于索引或切片的获取值都会调用__getitem__方法; 且不论key是否存在都会返回规定值

区别如下

class Answer(dict):
    def __getitem__(self, key):
        return 13


a = Answer(s='foo')                          如果继承 collections.UserDict, 则输出如下
print(a)
t = {}
t.update(a)
print(t)

{'s': 'foo'}                                 {'s': 'foo'}
{'s': 'foo'}                                 {'s': 13}

内置的 dict、list 和 str 类型是Python的底层基础,因此速度必须快。
这些内置类型由CPython实现,CPython走了捷径,故意不调用被子类覆盖的方法

7.解析顺序

1.直接在类上调用实例方法时,必须显式传入self参数
2.类的__mro__属性会显示继承方法的执行顺序

class A:
    pass


class B:
    pass


class C(B, A):
    pass


print(C.__mro__)

(<class '__main__.C'>, <class '__main__.B'>, <class '__main__.A'>, <class 'object'>)

8.补充

重新定义 eq 方法, 判断是否为类的实例对象

    def __eq__(self, other):
        if isinstance(other, Ve):
            return len(self) == len(other) and all(a == b for a, b in zip(self, other))
        else:
            return TypeError('not obj')

9.重载运算符

实现向量加法

    def __add__(self, other):
        try:
            pairs = itertools.zip_longest(self, other, fillvalue=0.0)
            return Ve(a + b for a, b in pairs)
        except TypeError:
            return NotImplemented

    def __radd__(self, other):              反向加法, 备选之用
        return self + other


obj = Ve([1, 2, 3, 4, 5])
obj1 = Ve([1, 2, 3, 4])
print(obj + obj1)

(2.0, 4.0, 6.0, 8.0, 5.0)

注释

1.pairs 是一个生成器, 它会生成(a, b)形式的元组, 其中a来自self, b来自other。
2.使用 fillvalue参数填充较短的那个可迭代对象, 此处用 0 填充
3.构建一个新Ve实例.

乘法同理

增值运算符 +=, *= 不会修改不可变目标,而是新建实例然后重新绑定
FaceCat-Kronos是一款由花卷猫量化团队基于清华大学Kronos开源架构开发的金融预测系统。该系统融合了深度学习方法,通过对证券历史行情进行大规模预训练,构建了能够识别市场微观结构的分析模型。该工具的核心功能在于为做市商及短线交易者提供高精度的价格形态规律推演,从而优化其交易策略的制定过程。 从技术架构来看,该系统依托Kronos框架的高性能计算特性,实现了对海量金融时序数据的高效处理。通过引入多层神经网络,模型能够捕捉传统技术分析难以察觉的非线性关联与潜在模式。这种基于人工智能的量化分析方法,不仅提升了市场数据的信息提取效率,也为金融决策过程引入了更为客观的算法依据。 在行业应用层面,此类工具的演进反映了金融科技领域向数据驱动范式转型的趋势。随着机器学习算法的持续优化,量化预测模型在时序外推准确性方面有望取得进一步突破,这可能对市场定价机制与风险管理实践产生结构性影响。值得注意的是,在推进技术应用的同时,需同步完善数据治理框架,确保模型训练所涉及的敏感金融信息符合隐私保护与合规性要求。 总体而言,FaceCat-Kronos代表了金融分析工具向智能化方向演进的技术探索。它的发展既体现了开源计算生态与专业领域知识的有效结合,也为市场参与者提供了补充传统分析方法的算法工具。未来随着跨学科技术的持续融合,此类系统有望在风险控制、策略回测等多个维度推动投资管理的科学化进程。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值