研究背景
所有成像系统都受到将一小部分入射通量导向图像中不希望位置的现象的影响。这种现象的可能原因包括菲涅尔反射、衍射、透明玻璃或塑料透镜元件中的空气泡散射、透镜元件表面缺陷的散射、灰尘或其他粒子的散射以及来自感兴趣平面以外的平面的通量。1 被误导的通量被称为杂散光。它也被称为透镜眩光、面纱眩光和雾。2 杂散光降低了图像的对比度和光度及色彩准确性。例如,在摄影中,背光场景如包含较暗前景对象的肖像遭受对比度差和前景对象细节减少的问题。在利用反卷积进行物体重建的三维荧光显微镜中,来自除兴趣平面外的其他平面的杂散荧光通量会降低图像细节的对比度,在某些情况下,实际上会遮蔽那些细节。杂散光还影响图像的颜色准确性。在一个包含被大量不同颜色的光背景包围的鲜艳颜色物体的场景中,由于背景污染,测量到的物体颜色将与真实颜色显著不同。3
研究主旨
本文提出了一种参数化点扩散函数(PSF)模型及其参数估计方法,旨在减少数字静态相机中的杂散光效应。通过构建光源箱并结合非线性优化算法,研究者成功估计了PSF模型参数,并验证了该方法在真实场景图像中的有效性,改善了图像的对比度和色彩准确性。
研究特点
在任何实际光学成像系统中,由于表面缺陷和光学元件之间的多次反射引起的散射,一部分入射光通量被导向不希望的位置。这种不需要的光称为杂散光。其效应包括对比度降低、细节减少和颜色不准确。为了准确地去除杂散通量效应,首先需要确定系统的杂散光点扩散函数(PSF)。对于数字静态相机,我们假设了一个参数化的、移变的、旋转不变的PSF模型。为了估计该模型的参数,我们使用一个光源箱,它在圆形孔径后面提供几乎均匀的照明。当光源位于相机视场的不同位置时,拍摄了该光源的多幅图像。此外,每幅场景的另一个曝光使用不同的快门速度,以提供较暗区域的细节。从这些图像获得的数据子集用于非线性优化算法中。在估计PSF模型的参数后,我们提供了将校正算法应用于拍摄真实世界场景的图像的结果。