Introduction
传播虚假信息用于:选举、金融、医疗
与真实账户互动的高级机器人,在与真实账户的互动中,导致图结构包含伪装和不可靠的边缘。这些不可靠的边缘干扰了机器人和人类表示之间的区分。
基于边缘置信度评估(BECE, Bot detection method based on Edge Confidence Evaluation)的社交机器人检测方法:其中的边缘置信度评估模块,用于评估边缘的可靠性并识别不可靠的边缘。
基于用户节点的表示为边缘设计特征,并引入参数化高斯分布,将边缘嵌入映射到潜在语义空间。我们通过最小化与标准分布的Kullback–Leibler(KL)散度来优化这些嵌入,并基于边缘表示评估它们的置信度。
在三个真实世界数据集上的实验结果表明,BECE在社交机器人检测方面有效且优越。此外,在六种广泛使用的GNN架构上的实验结果表明,我们提出的边缘置信度评估模块可以作为插件使用,以提高检测性能。