【文献阅读】Dispelling the Fake: Social Bot Detection Based on Edge Confidence Evaluation

Introduction

传播虚假信息用于:选举、金融、医疗

与真实账户互动的高级机器人,在与真实账户的互动中,导致图结构包含伪装和不可靠的边缘。这些不可靠的边缘干扰了机器人和人类表示之间的区分。

基于边缘置信度评估(BECE, Bot detection method based on Edge Confidence Evaluation)的社交机器人检测方法:其中的边缘置信度评估模块,用于评估边缘的可靠性并识别不可靠的边缘。

基于用户节点的表示为边缘设计特征,并引入参数化高斯分布,将边缘嵌入映射到潜在语义空间。我们通过最小化与标准分布的Kullback–Leibler(KL)散度来优化这些嵌入,并基于边缘表示评估它们的置信度。

在三个真实世界数据集上的实验结果表明,BECE在社交机器人检测方面有效且优越。此外,在六种广泛使用的GNN架构上的实验结果表明,我们提出的边缘置信度评估模块可以作为插件使用,以提高检测性能。

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值