【文献阅读】SeGA: Preference-Aware Self-Contrastive Learning with Prompts for Anomalous User Detection

Abstract

SeGA,一种基于偏好感知的自对比学习方法,用于检测异常用户。该方法通过异构编码器编码Twitter上各种实体的异构关系。引入了带伪标签的自对比学习,通过用户对应帖子中的偏好来区分用户之间的细微差异。构建了一个异构信息网络(HIN),其中包含用户和列表等节点类型之间的各种边类型,以建模具有不同活动的用户。为了学习用户之间的差异,预训练策略结合了大语言模型(LLMs)的知识,捕捉用户偏好的话题和情感,利用提示进行偏好感知的自对比学习。

主要贡献:
引入了偏好感知的自对比学习,通过相应的帖子学习用户行为。此外,结合了带有用户偏好的提示模板作为伪标签,以捕捉用户偏好的话题和情感。

在这里插入图片描述

用户可以创建、关注或成为一个列表的成员。当一个用户关注该列表,列表中的用户发布的消息其均可见。

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

伪偏好生成

用户i最近的10条帖子被用作提示,让LLM生成每条推文的主题t和情感e。
在这里插入图片描述

偏好意识自对比学习

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微调

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值