Abstract
SeGA,一种基于偏好感知的自对比学习方法,用于检测异常用户。该方法通过异构编码器编码Twitter上各种实体的异构关系。引入了带伪标签的自对比学习,通过用户对应帖子中的偏好来区分用户之间的细微差异。构建了一个异构信息网络(HIN),其中包含用户和列表等节点类型之间的各种边类型,以建模具有不同活动的用户。为了学习用户之间的差异,预训练策略结合了大语言模型(LLMs)的知识,捕捉用户偏好的话题和情感,利用提示进行偏好感知的自对比学习。
主要贡献:
引入了偏好感知的自对比学习,通过相应的帖子学习用户行为。此外,结合了带有用户偏好的提示模板作为伪标签,以捕捉用户偏好的话题和情感。
用户可以创建、关注或成为一个列表的成员。当一个用户关注该列表,列表中的用户发布的消息其均可见。
伪偏好生成
用户i最近的10条帖子被用作提示,让LLM生成每条推文的主题t和情感e。
偏好意识自对比学习