改善深层神经网络——优化算法(6)

 

目录

1.Mini-batch gradient descent

理解Mini-batch gradient descent

2.指数加权平均

指数加权平均的偏差修正

3.动量梯度下降法

4.RMSprop

5.Adam优化算法

6.学习率衰减

7.局部最优问题


1.Mini-batch gradient descent

前我们介绍的神经网络训练过程是对所有m个样本,称为batch,通过向量化计算方式,同时进行的。如果m很大,例如达到百万数量级,训练速度往往会很慢,因为每次迭代都要对所有样本进行进行求和运算和矩阵运算。我们将这种梯度下降算法称为Batch Gradient Descent。

为了解决这一问题,我们可以把m个训练样本分成若干个子集,称为mini-batches,这样每个子集包含的数据量就小了,例如只有1000,然后每次在单一子集上进行神经网络训练,速度就会大大提高。这种梯度下降算法叫做Mini-batch Gradient Descent。

假设总的训练样本个数m=5000000,其维度为(n_{x},m)。将其分成5000个子集,每个mini-batch含有1000个样本。我们将每个mini-batch记为X^{\left \{ t\right \} },其维度为(n_{x},1000)。相应的每个mini-batch的输出记为Y^{\left \{ t \right \}},其维度为(1,1000)(1,1000),且t=1,2,⋯,5000.

Mini-batches Gradient Descent的实现过程是先将总的训练样本分成T个子集(mini-batches),然后对每个mini-batch进行神经网络训练,包括Forward Propagation,Compute Cost Function,Backward Propagation,循环至T个mini-batch都训练完毕。

经过T次循环之后,所有m个训练样本都进行了梯度下降计算。这个过程,我们称之为经历了一个epoch。对于Batch Gradient Descent而言,一个epoch只进行一次梯度下降算法;而Mini-Batches Gradient Descent,一个epoch会进行T次梯度下降算法。

值得一提的是,对于Mini-Batches Gradient Descent,可以进行多次epoch训练。而且,每次epoch,最好是将总体训练数据重新打乱、重新分成T组mini-batches,这样有利于训练出最佳的神经网络模型。

理解Mini-batch gradient descent

Batch gradient descent和Mini-batch gradient descent的cost曲线如下图所示:

对于一般的神经网络模型,使用Batch gradient descent,随着迭代次数增加,cost是不断减小的。然而,使用Mini-batch gradient descent,随着在不同的mini-batch上迭代训练,其cost不是单调下降,而是受类似noise的影响,出现振荡。但整体的趋势是下降的,最终也能得到较低的cost值。

之所以出现细微振荡的原因是不同的mini-batch之间是有差异的。例如可能第一个子集(X{1},Y{1})(X{1},Y{1})是好的子集,而第二个子集(X{2},Y{2})(X{2},Y{2})包含了一些噪声noise。出现细微振荡是正常的。

如何选择每个mini-batch的大小,即包含的样本个数呢?有两个极端:如果mini-batch size=m,即为Batch gradient descent,只包含一个子集为(X^{\left \{ 1 \right \}},Y^{\left \{ 1 \right \}})=(X,Y);如果mini-batch size=1,即为Stachastic gradient descent,每个样本就是一个子集(X^{\left \{ 1 \right \}},Y^{\left \{ 1 \right \}})=(x^{(i)},y^{(i)}),共有m个子集。

我们来比较一下Batch gradient descent和Stachastic gradient descent的梯度下降曲线。如下图所示,蓝色的线代表Batch gradient descent,紫色的线代表Stachastic gradient descent。Batch gradient descent会比较平稳地接近全局最小值,但是因为使用了所有m个样本,每次前进的速度有些慢。Stachastic gradient descent每次前进速度很快,但是路线曲折,有较大的振荡,最终会在最小值附近来回波动,难以真正达到最小值处。而且在数值处理上就不能使用向量化的方法来提高运算速度。

实际使用中,mini-batch size不能设置得太大(Batch gradient descent),也不能设置得太小(Stachastic gradient descent)。这样,相当于结合了Batch gradient descent和Stachastic gradient descent各自的优点,既能使用向量化优化算法,又能叫快速地找到最小值。mini-batch gradient descent的梯度下降曲线如下图绿色所示,每次前进速度较快,且振荡较小,基本能接近全局最小值。

一般来说,如果总体样本数量m不太大时,例如m≤2000m≤2000,建议直接使用Batch gradient descent。如果总体样本数量m很大时,建议将样本分成许多mini-batches。推荐常用的mini-batch size为64,128,256,512。这些都是2的幂。之所以这样设置的原因是计算机存储数据一般是2的幂,这样设置可以提高运算速度。

2.指数加权平均

该部分我们将介绍指数加权平均(Exponentially weighted averages)的概念。

举个例子,记录半年内伦敦市的气温变化,并在二维平面上绘制出来,如下图所示:

看上去,温度数据似乎有noise,而且抖动较大。如果我们希望看到半年内气温的整体变化趋势,可以通过局部平均或叫移动平均(moving average)的方法来对每天气温进行平滑处理。

V_{0}=0

V_{1}=0.9V_{0}+0.1\theta _{1}

V_{2}=0.9V_{1}+0.1\theta _{2}

...

V_{t}=0.9V_{t-1}+0.1\theta _{t}

其中V表示\frac{1}{1-\beta }天温度的平均值

经过移动平均处理得到的气温如下图红色曲线所示:

β值越大,则指数加权平均的天数越多,平均后的趋势线就越平缓,但是同时也会向右平移。下图绿色曲线和黄色曲线分别表示了β=0.98和β=0.5时,指数加权平均的结果。

我们将指数加权平均公式的一般形式写下来:

因为\beta\frac{1}{1-\beta }次方差不多衰减到\frac{1}{e}可以忽略不计,因此V_{t}可以看做\frac{1}{1-\beta }天温度的指数加权平均值。

V_{t}是将原始数据值与衰减指数(衰减指数相加大概约等于1)点乘,相当于做了指数衰减,离得越近,影响越大,离得越远,影响越小,衰减越厉害。

代码实现如下:

指数加权平均数不是最精确的计算平均数的方法,但是其优点是占用内存少,效率高,代码执行简单。

指数加权平均的偏差修正

上文中提到当β=0.98时,指数加权平均结果如下图绿色曲线所示。但是实际上,真实曲线如紫色曲线所示。

我们注意到,紫色曲线与绿色曲线的区别是,紫色曲线开始的时候相对较低一些。这是因为开始时我们设置V_{0},所以初始值会相对小一些,直到后面受前面的影响渐渐变小,趋于正常。

修正这种问题的方法是进行偏移校正(bias correction),即在每次计算完Vt后,对Vt进行下式处理:\frac{V_{t}}{1-\beta ^{t}}

 

在刚开始的时候,t比较小,(1−\beta ^{t})<1,这样就将VtVt修正得更大一些,效果是把紫色曲线开始部分向上提升一些,与绿色曲线接近重合。随着 t 增大,(1−\beta ^{t})≈1,Vt基本不变,紫色曲线与绿色曲线依然重合。这样就实现了简单的偏移校正,得到我们希望的绿色曲线。

值得一提的是,机器学习中,偏移校正并不是必须的。因为,在迭代一次次数后(t较大),Vt受初始值影响微乎其微,紫色曲线与绿色曲线基本重合。所以,一般可以忽略初始迭代过程,等到一定迭代之后再取值,这样就不需要进行偏移校正了。

3.动量梯度下降法

该部分将介绍动量梯度下降算法,其速度要比传统的梯度下降算法快很多。做法是在每次训练时,对梯度进行指数加权平均处理,然后用得到的梯度值更新权重W和常数项b。下面介绍具体的实现过程。

原始的梯度下降算法如上图蓝色折线所示。在梯度下降过程中,梯度下降的振荡较大,尤其对于W、b之间数值范围差别较大的情况。此时每一点处的梯度只与当前方向有关,产生类似折线的效果,前进缓慢。而如果对梯度进行指数加权平均,这样使当前梯度不仅与当前方向有关,还与之前的方向有关,这样处理让梯度前进方向更加平滑,减少振荡,能够更快地到达最小值处。

权重W和常数项b的指数加权平均表达式如下:

从动量的角度来看,以权重W为例,V_{dW}可以成速度V,dW可以看成是加速度a。指数加权平均实际上是计算当前的速度,当前速度由之前的速度和现在的加速度共同影响。而β<1,又能限制速度V_{dW}过大。也就是说,当前的速度是渐变的,而不是瞬变的,是动量的过程。这保证了梯度下降的平稳性和准确性,减少振荡,较快地达到最小值处。

动量梯度下降算法的过程如下:

初始时,令V_{dW}=0,V_{db}=0。一般设置β=0.9,即指数加权平均前10天的数据,实际应用效果较好。

另外,关于偏移校正,可以不使用。因为经过10次迭代后,随着滑动平均的过程,偏移情况会逐渐消失。

4.RMSprop

RMSprop是另外一种优化梯度下降速度的算法。每次迭代训练过程中,其权重W和常数项b的更新表达式为:

S_{dW}=\beta S_{dW}+(1-\beta )dW^{2}

S_{db}=\beta S_{db}+(1-\beta )db^{2}

W:=W-\alpha \frac{dW}{\sqrt{S}_{dw}},b:=b-\alpha \frac{db}{\sqrt{S_{db}}}

下面简单解释一下RMSprop算法的原理,仍然以下图为例,为了便于分析,令水平方向为W的方向,垂直方向为b的方向(实际上水平方向可能是W1,W2,W17的合集,垂直方向可能是W3,W4)。

从图中可以看出,梯度下降(蓝色折线)在垂直方向(b)上振荡较大,在水平方向(W)上振荡较小,表示在b方向上梯度较大,即db较大,而在W方向上梯度较小,即dW较小。因此为了加快W方向的速度减小b方向的速度减小震荡,要让\sqrt{S_{dw}}小,让\sqrt{S_{db}}大。所以让\sqrt{S_{dw}}加上dW的平方让\sqrt{S_{db}}加上db的平方,即加快了W方向的速度,减小了b方向的速度,减小振荡,实现快速梯度下降算法,其梯度下降过程如绿色折线所示。总得来说,就是如果哪个方向振荡大,就减小该方向的更新速度,从而减小振荡。

还有一点需要注意的是为了避免RMSprop算法中分母为零,通常可以在分母增加一个极小的常数ε:

其中,ε=10^{-8},或者其它较小值。

5.Adam优化算法

6.学习率衰减

减小学习因子αα也能有效提高神经网络训练速度,这种方法被称为learning rate decay。

Learning rate decay就是随着迭代次数增加,学习因子αα逐渐减小。下面用图示的方式来解释这样做的好处。下图中,蓝色折线表示使用恒定的学习因子α,由于每次训练α相同,步进长度不变,在接近最优值处的振荡也大,在最优值附近较大范围内振荡,与最优值距离就比较远。绿色折线表示使用不断减小的α,随着训练次数增加,α逐渐减小,步进长度减小,使得能够在最优值处较小范围内微弱振荡,不断逼近最优值。相比较恒定的α来说,learning rate decay更接近最优值。

Learning rate decay中对αα可由下列公式得到:

其中,deacy_rate是参数(可调),epoch是训练完所有样本的次数。随着epoch增加,α会不断变小。

除了上面计算α的公式之外,还有其它可供选择的计算公式:

其中,k为可调参数,t为mini-bach number。

除此之外,还可以设置α为关于 t 的离散值,随着 t 增加,α呈阶梯式减小。当然,也可以根据训练情况灵活调整当前的α值,但会比较耗时间。

7.局部最优问题

在使用梯度下降算法不断减小cost function时,可能会得到局部最优解(local optima)而不是全局最优解(global optima)。之前我们对局部最优解的理解是形如碗状的凹槽,如下图左边所示。但是在神经网络中,local optima的概念发生了变化。在高维空间的代价函数(如有20000个参数)中,梯度为0的点是局部最优点(所有维都是凹的)的概率是很小的,更有可能的是梯度为0的点是鞍点(部分维是凹的,部分维是凸的)。

类似马鞍状的plateaus会降低神经网络学习速度。Plateaus是梯度接近于零的平缓区域,如下图所示。在plateaus上梯度很小,前进缓慢,到达saddle point需要很长时间。到达saddle point后,由于随机扰动,梯度一般能够沿着图中绿色箭头,离开saddle point,继续前进,只是在plateaus上花费了太多时间。

总的来说,关于local optima,有两点总结:

  • (只要选择合理的强大的神经网络)一般不太可能陷入这种坏的“local optima”(如上图路线)

  • Plateaus可能会使梯度下降变慢,降低学习速度

值得一提的是,上文介绍的动量梯度下降,RMSprop,Adam算法都能有效解决plateaus下降过慢的问题,大大提高神经网络的学习速度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值