【大语言模型基础知识】模型名称解读


一、大语言模型名称解析

1.1 -Base(基础版)

  • 定义:通常是指未经特定任务微调的基础预训练模型,在训练过程中最初被开发和优化的,旨在平衡性能和资源消耗。
  • 用途:用于进一步的微调,以适应特定任务或应用场景。如:智能对话、文本内容生成等
  • 特点:包含了大量通用知识,但未对特定任务进行优化。

1.2 -Chat(聊天机器人)

  • 定义:针对对话系统设计和优化的模型。
  • 用途:用于生成自然语言对话,能够理解上下文并生成连贯且有意义的回复。如:聊天机器人、智能助力
  • 特点:经过大量对话数据微调,具备更好的上下文理解能力和对话生成能力。

1.3 -Instruct(执行指令)

  • 定义:旨在遵循指令或完成特定任务而设计和优化的模型。
  • 用途:用于执行具体指令,如回答问题、生成文本、翻译等任务。
  • 特点:经过指令数据集微调,能够更好地理解和执行用户提供的指令。

1.4 -4bit(mini版)

  • 定义:基于低精度(4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值