文章目录
一、大语言模型名称解析
1.1 -Base(基础版)
- 定义:通常是指未经特定任务微调的基础预训练模型,在训练过程中最初被开发和优化的,旨在平衡性能和资源消耗。
- 用途:用于进一步的微调,以适应特定任务或应用场景。如:智能对话、文本内容生成等
- 特点:包含了大量通用知识,但未对特定任务进行优化。
1.2 -Chat(聊天机器人)
- 定义:针对对话系统设计和优化的模型。
- 用途:用于生成自然语言对话,能够理解上下文并生成连贯且有意义的回复。如:聊天机器人、智能助力
- 特点:经过大量对话数据微调,具备更好的上下文理解能力和对话生成能力。
1.3 -Instruct(执行指令)
- 定义:旨在遵循指令或完成特定任务而设计和优化的模型。
- 用途:用于执行具体指令,如回答问题、生成文本、翻译等任务。
- 特点:经过指令数据集微调,能够更好地理解和执行用户提供的指令。
1.4 -4bit(mini版)
- 定义:基于低精度(4