自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(541)
  • 资源 (1)
  • 收藏
  • 关注

原创 英伟达(NVIDIA)GPU 常用命令大全

英伟达GPU常用命令大全,涵盖基础监控、进程管理、硬件信息、性能分析和进阶调试五大场景。核心命令nvidia-smi可查看GPU状态、利用率、温度和进程信息,配合-l参数实现动态刷新。进程管理使用nvidia-smi pmon定位占用GPU的进程,硬件查询包括型号、带宽和驱动版本。性能分析关注功耗、CUDA版本和PCIe链路,进阶调试涉及容器GPU分配和多卡拓扑。推荐第三方工具nvtop和gpustat增强监控体验。这些命令覆盖90%的GPU管理需求,特别适合异构推理优化场景。

2026-01-08 17:15:54 78

原创 异构硬件推理性能的细粒度分析

本文提出了一套针对异构硬件推理性能的系统化分析框架。首先构建了包含时间占比、资源效率、延迟构成和吞吐量等多维度的性能指标体系,并针对不同硬件特性设计动态权重。其次提出三层瓶颈定位方法:全链路宏观分析、算子级微观分析和互联分布分析,推荐使用Nsight、Triton等专业工具链。进一步设计了包含统一性能画像工具、硬件专属工具和自动化脚本的分析体系,并给出优化闭环设计方案,包括问题归因策略匹配和持续迭代机制。最后通过ResNet50优化案例展示实际效果,提出预测式分析、硬件感知编译等进阶方向。该框架实现了从宏观

2026-01-08 11:18:01 17

原创 异构硬件推理性能细粒度分析体系

本文提出了一套异构硬件推理性能的细粒度分析体系,通过构建全链路、多维度的性能指标体系,结合分层诊断方法,实现从宏观到微观的瓶颈定位。该体系包含三个核心模块:1) 全链路耗时拆解指标(CPU预处理/H2D/Kernel/D2H),2) 核心资源利用率指标(MFU/MBU/PCIe带宽),3) 瓶颈特征指标。采用"宏观-微观-互联"三层分析方法,配合专用工具链(如Nsight Compute、nvidia-smi等),形成完整的性能优化闭环,适用于GPU/TPU/NPU等异构硬件场景,可精准

2026-01-08 11:15:39 118

原创 【golang】替换 ioutil.ReadAll 为 io.ReadAll 性能会下降吗

摘要:ioutil.ReadAll 与 io.ReadAll 性能完全一致,替换无性能损失。Go1.16+ 中 ioutil.ReadAll 仅是 io.ReadAll 的包装,底层实现相同。实测1GB文件读取显示二者耗时、内存分配完全一致(约890ms/1.05GB)。废弃 ioutil 是出于代码规范考量,io 包作为核心将持续优化。Go1.16+项目应优先使用 io.ReadAll,仅需注意版本兼容性(Go1.16+支持)。其他类似函数如 ReadFile/WriteFile 替换也无性能差异。

2026-01-08 11:12:02 527

原创 qpm和并发的关系

QPM(每分钟查询数)与并发的关系详解 QPM(吞吐量指标)和并发(并行处理能力)是性能评估的核心指标,二者通过响应时间(RT)形成数学关系:QPS = 并发数 × 1000 ÷ RT(ms)。并发数决定QPM上限,但超过最优值后,QPM会因资源竞争而下降。AI场景中,GPU算力成为并发瓶颈,但公式依然适用。性能优化的关键是找到最优并发数,使QPM最大化,同时保持RT稳定。典型场景计算显示,200并发、20ms RT的系统理论QPM为6万。需注意并发与QPM非线性增长,系统资源有限性会导致过高并发时性能下降

2025-12-29 17:32:04 63

原创 大模型中GPT 和 VIT 分离部署和PD分离部署的区别

摘要:GPT与ViT分离部署和PD分离部署是不同维度的概念。前者将文本处理(GPT)与图像处理(ViT)模型独立部署,实现资源隔离与灵活扩展,适用于多模态系统。后者可能指TiDB的Placement Driver分离或大模型推理中的Prefill-Decode阶段分离,优化单模型推理效率。两者分别解决跨模型资源分配和单模型内部阶段性能问题,目标均为提升系统效率,但适用场景与技术重点不同。

2025-12-10 19:40:08 107

原创 传统小模型与大模型运维的不同

摘要:传统小模型与大模型运维在资源需求、部署架构、监控、性能优化等八大维度差异显著。大模型需分布式集群(千卡级GPU)、复杂监控(全链路追踪)、系统工程优化(量化/并行),成本高(训练千万级)、容灾要求高(99.99%可用性)。安全需防控多维度风险(数据/推理/合规),而小模型仅需单机资源与基础监控。两者运维从轻量单机升级为大规模分布式系统工程,技术复杂度和资源需求呈指数级增长。

2025-12-09 14:44:58 175

原创 大模型服务中知识图谱、飞轮、意图分类分别是什么意思

摘要: 知识图谱、飞轮和意图分类是大模型服务中的三大关键技术。知识图谱作为外部知识源,通过结构化三元组补充大模型的静态知识,解决时效性、专业性和推理问题。飞轮效应通过“数据-优化-增长”闭环驱动模型持续迭代,提升用户体验。意图分类则精准识别用户需求,确保生成内容与意图匹配。三者协同作用:知识图谱增强模型知识库,飞轮优化数据驱动迭代,意图分类提升交互准确性,共同推动大模型从基础功能向高效智能演进。

2025-12-09 14:18:33 408

原创 大模型运维预案思考

摘要:在大模型推理服务中,模型本身无法直接感知用户输入的原始token数,但可通过工程手段在服务层优化token使用。主要方法包括:1) 输入预处理,通过tokenizer预估长度并截断或压缩文本;2) 优化prompt模板和多轮对话管理;3) 输出阶段限制生成长度;4) 实施token预算机制。这些方法可在不依赖模型感知token数的情况下,有效减少输入/输出token,优化资源利用率和响应延迟。核心思路是在服务层提前计算并控制token长度,通过截断、压缩等手段降低计算压力。

2025-12-08 19:49:29 58

原创 大模型常用的监控指标

摘要:大模型推理服务的核心监控指标包括GPU利用率、SM利用率、平均耗时、首字耗时、P99耗时、输入/输出token数、功率、KV Cache和显存占用。这些指标受请求量和token长度影响:请求量增加会提高GPU利用率但可能延长延迟;token长度增加会提升计算复杂度并增加显存压力。优化需平衡资源利用率、延迟和显存,如通过动态批处理提升GPU利用率、KV Cache复用降低延迟、分页KV Cache缓解显存压力。需从硬件、模型和业务三个维度综合分析指标关系。

2025-12-08 16:15:32 215

原创 运维中的SLA

SLA(服务等级协议)指标是衡量服务质量的量化标准,主要包括可用性、延迟、吞吐量、故障恢复时间等核心维度。这些指标明确服务提供商与客户之间的责任边界,通过百分比、时间等具体数值(如99.9%可用性、P99延迟≤200ms)量化服务质量。不同业务场景(如云服务、API、IT运维)的SLA侧重不同,通常配套监控工具和未达标罚则。SLA指标既作为服务承诺的契约,也驱动服务持续优化,是保障服务质量的关键管理工具。

2025-12-08 11:55:33 98

原创 大模型架构有哪些

大模型推理框架选型指南:主流框架各有优势,vLLM、TGI、TensorRT-LLM、llama.cpp和MLC-LLM是五大主流选择。TGI深度集成Hugging Face生态,适合快速部署;TensorRT-LLM在NVIDIA GPU上性能最优;llama.cpp轻量跨平台,适合边缘设备;MLC-LLM擅长移动端部署;vLLM则在高吞吐场景表现突出。选型需结合硬件环境、性能需求和应用场景,如生产级服务推荐TGI,个人开发可选llama.cpp,移动端首选MLC-LLM。(149字)

2025-11-26 21:06:40 46

原创 为什么 HTTP 是无状态的

HTTP 协议采用无状态设计,每个请求和响应都是独立且简单的。服务器仅处理当前请求,不会跟踪或保存之前的请求信息。这种设计简化了服务器处理逻辑,提高了协议的可扩展性。无状态特性使得每个请求都需包含完整信息,虽增加了请求数据量,但确保了协议的高效性和灵活性。

2025-11-11 15:23:45 114

原创 浏览器在键入网址后,整个过程是怎样的

摘要:浏览器访问网址时,首先解析URL并生成HTTP请求报文,随后通过DNS解析获取IP地址。协议栈封装TCP/IP/MAC头部后,数据包经网卡转为电信号,通过交换机和路由器传输至服务器。服务器处理请求后返回响应数据,经反向路径传回浏览器,最终完成页面渲染。整个过程涉及网络各层协议及设备的协同工作。

2025-11-11 15:22:38 156

原创 PQL Rate函数

摘要:本文介绍了Prometheus中rate()函数的正确使用方法及注意事项。该函数用于计算计数器类型指标的每秒平均速率(如HTTP请求数),语法为rate(metric_name[时间范围])。文章强调rate()仅适用于单调递增的计数器,若误用于其他场景(如绝对值指标)会导致数据不准确,并对比了与irate()函数的区别。正确使用rate()函数能有效监控关键指标的变化趋势。(149字)

2025-11-10 17:53:20 48

原创 大模型不同类型GPU卡的兑换比

摘要:本文分析了不同GPU在大模型训练/推理场景下的性能兑换比,以A100-80G为基准。H100/H800/H20等高端卡因架构优势可达A100的2-6倍性能,其中H100在FP16算力和带宽上表现最优。兑换比计算需综合考虑FP16吞吐、显存容量及带宽,并随任务类型浮动。实际应用中,H100集群级性能约为A100的6倍,而特供版H20凭借显存优势在推理场景性价比突出。选型建议:千亿参数训练首选H100,大模型推理可考虑H20。(149字)

2025-11-10 17:50:52 69

原创 【WIP】大模型运维中GPU机器介绍

NVIDIA主流AI加速卡对比摘要 NVIDIA多款AI加速卡在架构、显存和算力上差异显著,覆盖从训练到推理的全场景需求: 旗舰训练卡:H100/H200(Hopper架构)提供80-141GB HBM3显存,FP16算力达3,958-4,900 TFLOPS,支持900GB/s NVLink,适合千亿参数大模型训练;中国特供版H800/H20在带宽和互联性能上受限(400GB/s NVLink,FP16算力1,336-1,979 TFLOPS)。 经典训练卡:A100(Ampere架构)仍为行业基准,80

2025-11-10 17:47:13 178

原创 大模型评测探索--以业务价值导向进行评测

智能复盘系统评测体系构建 核心观点: 提出"自动化打底+人工校准"的人机协同评测模式 智能复盘测评与传统客服测评存在本质差异,需重点关注洞察深度和可执行性 传统NLP指标(ROUGE/BLEU)在业务场景中失效,需建立业务价值导向评估体系 关键进展: 构建四级评测架构:通用能力→语义相似→业务价值→人工校准 最终采用"业务价值导向打分法",评估维度包括: ✓ 洞察深度 ✓ 逻辑完整性 ✓ 可执行性 ✓ 证据支撑 实践价值: 突破传统AI评测局限,形成"感知-

2025-11-10 16:04:02 41

原创 prefill和decode的pd部署是什么

摘要:Prefill-Decode(PD)分离部署是大语言模型推理优化的关键技术,通过将计算密集的Prefill阶段与内存密集的Decode阶段分配到不同硬件设备独立处理。Prefill阶段专注并行处理输入文本生成KV缓存,Decode阶段则基于缓存自回归生成后续token。该技术解决了传统架构中资源竞争、服务中断等问题,显著提升吞吐量、降低延迟,并支持弹性扩展。已应用于OpenAI、阿里云等平台,成为现代LLM工程化的核心方案。

2025-11-07 14:46:05 306

原创 【WIP】大模型评测指标

大模型推理性能评估的四大核心指标包括:TTFT(首token延迟,影响用户体验)、TPOT(每token延迟,决定生成速度)、Throughput(吞吐量,衡量系统并发能力)和Cost(成本,评估经济可行性)。这些指标直接影响模型的生产落地效果,必须纳入评测体系。企业选型时需平衡"模型能力"和"性能成本",通过加权评分等方式进行综合评估。优化方向涉及模型量化、推理引擎改进及并发调度等,是评估大模型"运行效率"与"落地可行性"的关

2025-11-07 14:40:46 170

原创 IAAS PAAS SAAS MAAS分别是什么

摘要: 云计算服务模式分为四层: IaaS(基础设施即服务):提供虚拟机、存储等底层资源,用户需自行管理OS和应用(如AWS EC2); PaaS(平台即服务):提供开发环境,用户专注代码,服务商管理底层(如Heroku); SaaS(软件即服务):直接使用现成软件(如Zoom),无需维护; MaaS(模型即服务):AI时代新范式,通过API调用大模型能力(如GPT API),用户仅需设计Prompt。 四者逐层抽象,MaaS因低门槛、快速验证成为AI应用核心模式。需注意在AI领域MaaS特指模型服务,非交

2025-11-07 14:26:52 69

原创 在大模型压测中是测试单卡还是压测单个机器上所有卡?

本文详细分析了大模型服务压测中的两种关键方式:单卡压测和单机多卡压测。单卡压测主要用于评估特定GPU卡的理论性能上限,为调度策略提供基准数据;单机多卡压测则评估整机性能,验证多卡并行推理效果和卡间协同效率。文章还阐述了二者的递进关系,建议压测流程应从单卡到单机再到集群分阶段进行,并提供了具体方法和注意事项。最后强调两者缺一不可,前者提供调度依据,后者验证实际部署效果,共同为生产环境容量规划提供数据支撑。(148字)

2025-11-04 14:21:12 205

原创 在gpu卡异构部署的情况下如何做大模型压测

本文系统探讨了在大模型服务中混合使用不同GPU卡(如A100/H100/V100等)时的压测与容量评估方法。首先提出明确压测目标(容量摸底、性能评估、调度验证等),然后设计分层压测策略(单卡、混合卡、动态调权测试),并给出具体实施步骤。重点关注硬件异构环境下的调度策略验证、瓶颈定位(计算/显存/网络等)以及优化建议。最后强调通过"分而治之+动态验证"的方法,先测试单卡性能,再验证混合组合,最终输出容量曲线、资源利用率和最优部署方案,以实现异构资源的高效利用。

2025-11-04 14:19:05 49

原创 【探索问题】如何运维一个大模型?

大模型运维体系摘要(150字) 腾讯混元大模型等大型AI系统的运维需构建多维度技术框架,覆盖基础设施管理、模型部署、稳定性保障等关键环节。核心要点包括: 硬件与网络:通过GPU监控、分布式存储和高速网络架构确保计算效能; 模型运行:采用容器化部署、分布式计算及实时性能监控; 高可用设计:建立故障检测机制、冗余架构和负载均衡策略; 数据安全:实施数据加密、访问控制和合规审计; 效能优化:结合模型压缩、动态资源分配提升性价比。运维需融合SRE方法论与自动化工具,形成"观测-响应-优化"闭环,

2025-10-31 15:46:10 91

原创 如何训练一个运维大模型

摘要: 利用开源大模型(如Qwen、ChatGLM)构建运维专用AI,可通过两种方法实现: 轻量级RAG方案:结合向量检索与提示工程,快速接入运维文档(日志、手册)生成答案,适合初期验证; 微调方案(SFT/LoRA):基于运维对话数据(工单、脚本、日志样本)训练模型,提升专业能力,需GPU算力支持。 关键步骤:选择模型底座(推荐中文优化的Qwen/ChatGLM)、准备结构化数据(JSON问答对)、部署推理服务(FastAPI/vLLM),并持续迭代优化。 优势:自动化故障排查、命令生成、知识问答,降低人

2025-09-03 14:22:19 88

原创 阿里云面试题:最大数

摘要: 本文讨论如何将一组非负整数重新排列组成最大的整数。初始错误解法通过直接比较数字字符串的字典序和前缀进行排序,但在处理类似[432,43243]的输入时失效。正确解法应比较两个数字不同拼接方式的结果:若str(a)+str(b) > str(b)+str(a),则a应排在b前。通过自定义排序函数结合functools.cmp_to_key实现,并处理全零特殊情况(如返回"0"而非"000")。最终将排序后的字符串拼接即为最大整数。

2025-08-17 14:18:47 220

原创 设计一个高可用、可拓展、监控报警系统,使用普罗米修斯和grafana,并给出go实现

本文介绍了基于Go的高可用微服务系统设计与监控方案。系统采用前后端分离架构,支持水平扩展,通过容器化部署实现高可用。重点展示了Go应用集成Prometheus监控的实践,包括自定义指标采集、暴露/metrics接口,以及Prometheus与Grafana的配置方法。同时提供了报警规则配置示例,支持多种通知方式。文章还补充了服务链路追踪(OpenTelemetry+Jaeger)和结构化日志的实现方案,完善了系统的可观测性。整体方案强调自动化部署、弹性伸缩和故障快速响应,适用于生产环境。

2025-07-29 12:45:20 404

原创 mysql 快速上手

MySQL快速上手指南摘要:本文介绍了MySQL数据库的基础操作和实用技巧,包括连接方式、SQL函数(查询/操作/定义)、数据拼接与格式化、高级查询(子查询/连接/分组)、事务处理、索引优化和常用数据类型。重点讲解了字符串拼接、条件判断、日期处理等实用功能,以及批量操作、性能优化等技巧。适合初学者快速掌握MySQL核心功能,为后续学习存储过程、触发器等高级特性打下基础。

2025-07-27 18:38:34 150

原创 golang实现一个定时引擎,功能包括按照corntab的时间任务实时增加、修改、删除定时任务

本文介绍了一个基于Go语言的轻量级Cron定时任务引擎实现。该引擎使用标准库time和第三方库cron/v3构建,支持秒级精度的定时任务调度。核心功能包括: 任务管理:通过Task结构体封装任务信息,提供增删改查操作 并发安全:使用读写锁(sync.RWMutex)保证多线程安全 动态调度:支持运行时修改任务参数而不中断服务 生命周期控制:提供Start/Stop方法管理引擎运行状态 示例代码演示了如何创建任务(如每5秒执行)、更新任务频率和删除任务。系统设计考虑了扩展性,建议了任务持久化、执行监控、分布式

2025-07-26 16:20:02 134

原创 golang实现一个规则引擎,功能包括实时增加、修改、删除规则

本文介绍了一个用Go实现的轻量级规则引擎,核心功能包括:1) 支持实时增删改规则;2) 基于条件函数评估触发动作;3) 使用读写锁保证并发安全。引擎采用map存储规则,通过Data类型传递上下文数据,并提供了规则执行的基本流程。文章还提出了扩展方向(如优先级、持久化)和优化建议(索引、并行执行)。示例代码展示了温度监控场景的应用,演示了规则管理全流程。该实现简洁高效,适合需要灵活规则管理的应用场景。

2025-07-26 16:16:51 181

原创 广告业务中A/B实验分桶方法比较:UID VS DID

广告业务实验分桶策略分析 在广告业务实验中,用户ID分桶和设备ID分桶各具特点:用户ID分桶适合长期价值评估和跨设备行为分析,能避免实验污染但隐私风险较高;设备ID分桶则更适配短期设备端效果测试,隐私友好但存在多设备行为割裂问题。对于游客模式,设备ID分桶通常是更优选择,因其能保证匿名性并快速获取短期行为数据,尽管需解决设备ID稳定性等问题。实际应用中,建议根据实验目标(长期/短期)、隐私要求和业务场景灵活选择,或采用混合分桶策略。合规处理ID(如哈希加密)和数据关联设计是关键实施要点。

2025-07-26 16:01:04 139

原创 广告业务中使用用户id分桶和使用设备id分桶实验,哪个更优

摘要:广告业务A/B测试中,用户ID分桶和设备ID分桶各有利弊。用户ID分桶能避免跨设备污染,保证用户级指标准确性,但依赖登录状态;设备ID分桶覆盖全量流量但存在跨设备问题。最佳实践建议:以注册用户为主的业务优先用户ID分桶,匿名流量场景使用设备ID分桶,或采用混合模式。广告业务尤其应关注用户唯一性,推荐优先用户ID分桶,必要时补充设备ID方案以确保实验准确性。(149字)

2025-07-26 15:54:33 124

原创 Raft 协议 Paxos协议 和zk协议的特点和异同

本文对比了三种分布式一致性协议:Paxos、Raft和Zab(Zookeeper)。Paxos是经典算法,理论完备但实现复杂;Raft简化了Paxos,引入明确Leader角色,更易工程实现;Zab专为Zookeeper设计,强调顺序一致性。三者在角色机制、实现难度、性能表现和应用场景上各有特点:Paxos适合底层核心系统,Raft广泛用于配置中心和分布式存储,Zab则适用于服务注册等协调场景。选择时需根据具体需求权衡复杂度与功能特性。

2025-07-26 15:08:51 150

原创 数据存储:OLAP vs OLTP

OLAP数据库是专为大数据分析和决策支持设计的系统,具有多维分析、列式存储、高并发处理等特点。常见产品包括ClickHouse、StarRocks、DorisDB等,适用于BI报表、实时数仓、用户行为分析等场景。与传统OLTP数据库不同,OLAP擅长处理复杂查询和大数据量分析,而OLTP更适合事务处理和实时增删改查。技术选型需根据具体需求,如ClickHouse适合高吞吐分析,StarRocks则长于实时查询和多表关联。在电商、金融等行业,OLAP能高效支撑数据分析和业务洞察。

2025-07-26 14:44:04 185

原创 数据库HB OB mysql ck startrocks, ES存储特点,以及应用场景

本文对比了六种主流数据库的存储特点及应用场景:HBase适合海量时序数据存储;OceanBase适用于金融级分布式事务;MySQL是传统关系型数据库,适合结构化数据;ClickHouse和StarRocks专注OLAP分析,前者擅长批量聚合,后者支持近实时查询;Elasticsearch则专精全文检索与日志分析。文末通过表格清晰对比了各数据库在存储类型、处理模式及典型应用场景的差异,为技术选型提供参考。

2025-07-26 14:41:11 359

原创 TEG高频面试题(附解题思路)

本文总结了TEG高频面试题及核心知识点,涵盖云计算、游戏开发、广告系统等方向。在系统设计方面,重点包括分布式存储架构、高并发匹配系统、实时日志分析等解决方案;算法部分则聚焦接雨水、LRU缓存等经典题型。分布式基础强调CAP理论和Paxos/Raft共识算法。备考建议指出要优先掌握高频题,注重技术理论与业务场景的结合,并通过模拟面试优化表达。典型解题思路如:采用纠删码降低存储成本、基于Quorum实现跨机房容灾、使用Flink处理实时日志等,体现了工程实践与理论深度并重的特点。

2025-07-26 14:02:27 644

原创 数组中重复的数据

该问题要求在O(n)时间复杂度和O(1)额外空间条件下,找出数组中所有出现两次的数字。解法利用数组本身作为哈希表:通过交换元素将每个数字放到其值减1对应的索引位置。遍历完成后,若某个位置的数字不符合nums[i]=i+1,则说明该数字是重复的。例如输入[4,3,2,7,8,2,3,1]经过处理后,重复数字2和3会留在错误的位置上,从而被识别并收集。该方法满足题目要求的时间和空间复杂度限制,高效地解决了问题。

2025-07-25 15:25:45 242

原创 广告LTV详细算法公式、不同行业广告LTV均值参考、如何实际运营和提升LTV

广告LTV(生命周期价值)指单个用户在其生命周期内带来的累计广告收入。核心计算公式包括单用户LTV(各日ARPU累加)和用户组LTV(总收入/用户数)。行业差异显著:游戏类30日LTV约0.2-8元,工具类0.4-1.5美元。提升LTV的四大策略为:优化用户留存、提高广告单价(eCPM)、调节广告密度与时机、丰富广告形态,并需结合数据监测和用户分层运营。关键是通过留存延长生命周期,同时平衡广告收益与用户体验。

2025-07-24 11:32:56 728

原创 广告中的LTV(Lifetime Value:广告带来的用户终身价值)

广告LTV(用户生命周期广告价值)是衡量用户在使用产品期间为平台带来的累计广告收益指标。它通过统计用户观看激励视频、点击横幅广告等广告行为产生的总收入,帮助评估广告投放ROI、优化变现策略。计算公式为某批用户累计广告收入除以用户数,常见指标包括7日LTV、30日LTV等。与付费LTV不同,广告LTV专指广告收入价值,是游戏、工具类App变现分析的核心指标。例如某用户30天内产生0.32元广告收入,其30日广告LTV即为0.32元。

2025-07-24 11:27:01 507

原创 调节广告adload的算法:Contextual Bandits、多臂老虎机 Policy Gradient、Q-learning

多臂老虎机:每一次决策时,在多个选项中选一个(比如选择多少广告位、采用哪个广告策略),根据反馈(奖励:如收益、点击、用户体验)调整未来选择的概率,以最大化长期收益。:在MAB基础上,加入了“上下文信息”(环境特征、用户画像、页面内容等)做决策,使得策略更智能、个性化。:直接对策略(即:在某情境下怎么选adload方案)做梯度更新,适合高维、连续空间、大决策空间。Q-learning:基于“状态-动作”对的价值估计,采用贝尔曼方程不断更新最优动作价值。

2025-07-24 11:20:58 3194

编译原理试卷

这是天津大学的编译原理的2013年的试卷,可能会对你有所帮助,

2019-03-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除