什么是二分查找?
二分查找法,也称折半(对半)搜索算法,是一种在有序数组中查找某一特定元素的搜索算法
适用前提条件
1,存储在数组中
2,有序排序
搜索过程从数组的中间元素开始,如果中间元素是我们要找的元素,搜索过程结束
如果某一特定元素大于或者小于中间元素,则在数组大于或小于那一半中查找,而且跟开始一样从中间开始比较
如果在某一步数组为空,则代表找不到
这种搜索算法每一次比较都使搜索范围缩小一半
相比于普通的顺序查找法,差别如下图所示
如何实现
如果数据是有序数组,且不存在重复项
function BinarySearch(arr,target){
//数组长度等于0,或者未找到该值,返回-1,数组长度为1,直接返回0
if(arr.length<=1) return arr.length-1;
//开始下标,数组长度
let firstIndex=0;
let lastIndex=arr.length-1;
while(firstIndex<=lastIndex){
//中间下标
let midIndex=Math.floor((firstIndex+lastIndex)/2);
//目标target小于中间选中的值时,值在前半段,lastIndex缩小一半
if(target<arr[midIndex]){
lastIndex=midIndex-1;
}
//目标target大于中间的值时,目标值在后面一半,firstIndex改为midIndex+1
else if(target>arr[midIndex]){
firstIndex=midIndex+1;
}
//刚好相等,直接return,找到target了
else{
return midIndex;
}
}
//当while循环完成又没有找到目标target时
return -1;
}
如果数组出现了重复项,根据条件找第一个或者是最后一个代码逻辑略有不同,如果是想找全部,不建议用二分查找
function BinarySearch(arr,target){
//数组长度等于0,或者未找到该值,返回-1,数组长度为1,直接返回0
if(arr.length<=1) return arr.length-1;
//开始下标,数组长度
let firstIndex=0;
let lastIndex=arr.length-1;
while(firstIndex<=lastIndex){
//中间下标
let midIndex=Math.floor((firstIndex+lastIndex)/2);
//目标target小于中间选中的值时,值在前半段,lastIndex缩小一半
if(target<arr[midIndex]){
lastIndex=midIndex-1;
}
//目标target大于中间的值时,目标值在后面一半,firstIndex改为midIndex+1
else if(target>arr[midIndex]){
firstIndex=midIndex+1;
}
//刚好相等,直接return,找到target了
else{
// 当 target 与 arr[midIndex] 相等的时候,如果 midIndex 为0或者前一个数比 target 小那么就找到了第一个等于给定值的元素,直接返回
if (midIndex === 0 || arr[midIndex - 1] < target) return midIndex
// 否则高位下标为中间下标减1,继续查找
lastIndex = midIndex - 1
}
}
//当while循环完成又没有找到目标target时
return -1;
}
应用场景
二分查找法的时间复杂度为O(logn),这意味着满足条件使用它将十分高效。不过缺陷也很明显
1,有序:我们很难保证我们的数组都是有序的
2,数组:数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n),并且数组的存储是需要连续的内存空间,不适合大数据的情况
关于二分查找的应用场景,主要如下:
不适合数据量太小的数列;数列太小,直接顺序遍历说不定更快,也更简单
每次元素与元素的比较是比较耗时的,这个比较操作耗时占整个遍历算法时间的大部分,那么使用二分查找就能有效减少元素比较的次数
不适合数据量太大的数列,二分查找作用的数据结构是顺序表,也就是数组,数组是需要连续的内存空间的,系统并不一定有这么大的连续内存空间可以使用。