Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
中文:给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
方法:动态规划算法,比较简单.
图解
代码:
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if(grid.size()==0) return 0;
int row=grid.size();
int col=grid[0].size();
int dp[row][col];
dp[0][0]=grid[0][0]; //边界条件
for(int i=1;i<col;i++){
dp[0][i]=dp[0][i-1]+grid[0][i];
}
for(int i=1;i<row;i++){
dp[i][0]=dp[i-1][0]+grid[i][0];
for(int j=1;j<col;j++){
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
}
}
return dp[row-1][col-1];
}
};
注意:
二维数组求列的size方法:a[0].size()