TF代码研读-Device(DeviceContext)

10 篇文章 10 订阅 ¥29.90 ¥99.00
DeviceContext是TensorFlow中非CPU设备执行计算的核心类,尤其关注stream管理和张量拷贝。它为GPU、SYCL和XLA设备衍生出特定的上下文实现。在GPU上,DeviceContext表现为GPUDeviceContext,而XLA设备则对应XlaDeviceContext,后者着重实现了张量管理和流管理的定制化功能。在执行计算任务时,GPU等设备不直接调用底层接口,而是通过ThenExecute函数进行间接操作。
摘要由CSDN通过智能技术生成

DeviceContext是非CPU设备执行计算操作的核心类,重点提供了stream虚函数、以及张量拷贝相关函数。并且根据不同设备进一步派生出不同的设备上下文类(GPUDeviceContext、SYCLDeviceContext、XlaDeviceContext)。

与CPU设备不同 GPU设备(SYCL/XLA/RPC也一样),设备在执行具体计算任务时并不是给Eigen底层计算的,而是由设备底层接口计算的(例如cuda),当计算较多时,不同节点的与底层设备的交互并不是直接调用相关接口,而是通过传入执行函数的函数指针、执行所需的数据流、以及执行的设备信息到一个ThenExecute函数中,由ThenExecute函数执行具体的计算操作。

 

//设备的上下文信息类,注意继承自一个通用的计数器类,为一个抽象类
class DeviceContext : public core::RefCounted {
 public:
  ~DeviceContext() override {}
  virtual stream_executor::Stream* stream() const { return nullptr; }//TF流
  //维持流的生命周期
  virtual void MaintainLifetimeOnStream(const Tensor* t,
                                        stream_executor::Stream* stream) const {
  }
  /
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橘子都吃不起!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值