DeviceContext是非CPU设备执行计算操作的核心类,重点提供了stream虚函数、以及张量拷贝相关函数。并且根据不同设备进一步派生出不同的设备上下文类(GPUDeviceContext、SYCLDeviceContext、XlaDeviceContext)。
与CPU设备不同 GPU设备(SYCL/XLA/RPC也一样),设备在执行具体计算任务时并不是给Eigen底层计算的,而是由设备底层接口计算的(例如cuda),当计算较多时,不同节点的与底层设备的交互并不是直接调用相关接口,而是通过传入执行函数的函数指针、执行所需的数据流、以及执行的设备信息到一个ThenExecute函数中,由ThenExecute函数执行具体的计算操作。
//设备的上下文信息类,注意继承自一个通用的计数器类,为一个抽象类
class DeviceContext : public core::RefCounted {
public:
~DeviceContext() override {}
virtual stream_executor::Stream* stream() const { return nullptr; }//TF流
//维持流的生命周期
virtual void MaintainLifetimeOnStream(const Tensor* t,
stream_executor::Stream* stream) const {
}
/
DeviceContext是TensorFlow中非CPU设备执行计算的核心类,尤其关注stream管理和张量拷贝。它为GPU、SYCL和XLA设备衍生出特定的上下文实现。在GPU上,DeviceContext表现为GPUDeviceContext,而XLA设备则对应XlaDeviceContext,后者着重实现了张量管理和流管理的定制化功能。在执行计算任务时,GPU等设备不直接调用底层接口,而是通过ThenExecute函数进行间接操作。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



