2019牛客多校赛 第一场 H题 XOR 线性基

链接:https://ac.nowcoder.com/acm/contest/881/H
来源:牛客网

题目描述

Bobo has a set A of n integersa1,a2,…,an.
He wants to know the sum of sizes for all subsets of A whose xor sum is zero modulo (10^9+7)
Formally, find (∑S⊆A,⊕x∈Sx=0|S|)mod(10^9+7). Note that ⊕ denotes the exclusive-or (XOR).

输入描述:

The input consists of several test cases and is terminated by end-of-file.
The first line of each test case contains an integer n.
The second line contains n integers a1,a2,…,ana1,a2,…,an.
* 1≤n≤10^5
* 0≤ai≤10^18
* The number of test cases does not exceed 100.
* The sum of n does not exceed 2×10^6.

输出描述:

For each test case, print an integer which denotes the result.

输入

1
0
3
1 2 3
2
1000000000000000000 1000000000000000000

输出

1
3
2

题解:

给你n个数字的集合,求满足下面这个条件的所有子集合的长度之和:

子集合满足:所有元素异或为0.。  集合的长度为元素个数

参考某大佬的博客,写的很容易理解:https://blog.csdn.net/u013534123/article/details/96482572

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=63;
const int maxn=1e5+5;
const int mod=1e9+7;
ll x[maxn],tot;  //存储不是线性基内的n-r个数
ll a[N+1],b[N+1],c[N+1],cnt[N+1],cnt2[N+1],r;
ll n;
ll ksm(ll a,ll b){
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return ans;
}
bool calc(ll *a,ll s){
    for(int j=N;j>=0;j--){
        if(s>>j&1){
            if(a[j]==0){
                a[j]=s;
                break;
            }else{
                s^=a[j];
            }
        }
    }
    return s==0;
}
int main(){
    while(scanf("%d",&n)!=EOF){
        r=tot=0;
        for(int i=0;i<=N;i++) a[i]=b[i]=c[i]=0;
        for(int i=1;i<=n;i++){
            ll s;
            scanf("%lld",&s);
            if(!calc(a,s)){
                cnt[r++]=s;
            }else{
                x[tot++]=s;
            }
        }
        if(n==r){
            printf("0\n");
            continue;
        }
        ll m=ksm(2,n-r-1);
        ll ans=(n-r)*m%mod;
        for(int i=0;i<tot;i++){
            calc(b,x[i]);
        }
        for(int i=0;i<r;i++){
            memcpy(c,b,sizeof b);
            memcpy(cnt2,cnt,sizeof cnt);
            for(int k=0;k<r;k++){
                if(k==i) continue;
                calc(c,cnt2[k]);
            }
            int num=0;
            for(int j=0;j<=N;j++) if(c[j]) num++;
            if(num==r) ans=(ans+m)%mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值