《数学之美》读书记录
一、第12章 有限状态机和动态规划
(一)动态规划计算最短路径的计算量理解
动态规划将寻找全程最短路线分解为寻找一个局部最短路线的问题,书中在介绍时,举了一个寻找北京到广州最短路线的例子,原理就是全局最优,必定局部最优,即北京到广州是最短路线,如果该路线中经过郑州,那么该最短路线中北京到郑州的路线也必定最短,因此要找到全局最短路线,就找北京到各个节点城市之间最短的路线。
具体方法如下:
在北京与广州之间画一条横切线,该线将北京到广州的路线一分为二,因此北京到广州的最短路线必定经过该线上的城市。假定线上平均有10个城市,北京到广州最多经过15个城市。
(1)第一条横切线,横切线上的城市记为k0, k1, k2, k3…k9
从北京出发,计算北京到第一条横切线上的距离,共计算10次,分别记为l0, l1, l2, l3…l9,为北京到第一条横切线上最短路线
(2)第二条横切线,横切线上的城市记为m0, m1…m9
- 计算第一条横切线上各个城市到第二条横切线上各个城市的路线距离,即m0到k0, k1, k2, k3…k9;m1到k0, k1, k2, k3…k9;m2…计算次数第一条横切线上的城市数乘以第二条横切线上的城市数,即为10*10
- 求北京到m0, m1, m2…m9的最短路线,以北京到m0为例,只需将m0到k0, k1, k2, k3…k9的距离分别于对应的l0, l1, l2, l3…l9相加,值最小的即为最短路线,即min(m0k0 + l0, m0k1+ l1, …m0k9 + l9)
(3)一次类推,得到北京到上一条横切线各个城市的最短路线后,继续寻找北京到下一条横切线的最短路线,直至横切线经过广州,即可找到北京到广州的最短路线。因为北京到广州最多经历15个城市,计算量为10+10×10×14+10(北京到第一条横切线,最后一条横切线到广州均只计算10次),约为10×10×15