目录
赛题介绍
脑PET图像检测数据库,记录了老年人受试志愿者的脑PET影像资料,其中包括确诊为轻度认知障碍(MCI)患者的脑部影像数据和健康人(NC)的脑部影像数据。
赛题数据
大赛所用脑PET图像检测数据库,图像格式为nii。
文件夹名称 | 格式 | 解释 |
NC | nil | 健康 |
MCI | nil | 轻度认知障碍 |
其中,NC表示健康,MCI表示轻度认知障碍。
评估指标
评价标准采用F1_score
True Positive (TP): 把正样本成功预测为正。
True Negative (TN):把负样本成功预测为负。
False Positive (FP):把负样本错误地预测为正。
False Negative (FN):把正样本错误的预测为负。
Precision着重评估:在预测为Positive的所有数据中,真实Positve的数据到底占多少。
Recall着重评估:在所有的Positive数据中,到底有多少数据被成功预测为Positive。
Baseline 介绍
1、导入所需的库
glob库,
用来查找文件目录和文件,并将搜索的到的结果返回到一个列表中。
numpy库,用于数值计算。
pandas库,用于
数据处理。
nibabel库,用于读写医学影像。
OrthoSlicer3D库,用于图像可视化。
第一次使用nibabel库,简单补充一下nibabel用法。
导包 | import nibabel as nib |
加载图片 | nib.load(path) |
2、图像格式解读
数据格式(128,128,63,1)表示一个四维数据,其中每个维度的含义如下:
第一个维度:大小为128,表示数据的x轴维度,通常对应于图像的宽度。
第二个维度:大小为128,表示数据的y轴维度,通常对应于图像的高度。
第三个维度:大小为63,表示数据的z轴维度,通常对应于图像的深度或切片数量。在医学图像中,这通常表示图像在空间中的不同层次或位置。
第四个维度:大小为1,表示数据的通道数。在这种情况下,通道数为1,表明这是一个单通道的图像或数据。对于RGB图像来说,通常会有3个通道(红、绿、蓝)。
综上所述,(128, 128, 63,1)表示一个大小为128x128的单通道三维图像数据,其中有63个切片(或层次)。这种数据格式常用于医学图像,如MRI (磁共振成像)和CT (计算机断层扫描)图像。每个切片都是一-个128x128的二维图像,共有63个切片,表示不同位置的横断面图像。每个像素点包含-一个灰度值,表示图像的强度或密度。
3、模型训练
本次任务是一个二分类任务(MCI和NC),Baseline使用逻辑回归来对模型进行训练。
除此之外,在Baseline中,还可以将逻辑回归替换成支持向量机、决策树、随机森林、K近邻算法、朴素贝叶斯、多层感知器、卷积神经网络。
Baseline的分数:0.48485。
Baseline的Fork地址:基于logistic回归的脑PET图像分析和疾病预测-baseline - 飞桨AI Studio
大佬讲解:【AI夏令营】CV赛题解析与Baseline逐行精读_哔哩哔哩_bilibili
总结
使用机器学习的方法来进行预测,分数普遍偏低,接下来将准备尝试使用卷积神经网络或者Transfomer解决这个问题,但是通过Baseline中机器学习的方法,我掌握了如何将图片特征转化为一些统计量,通过多个统计量进行预测。