AI夏令营-CV学习笔记-脑PET图像分析和疾病预测挑战赛

本文介绍了脑PET图像检测比赛的数据结构,使用了逻辑回归作为Baseline,评估指标为F1_score。作者计划尝试CNN和Transformer提升预测性能,并强调了从机器学习方法中学到的特征提取和统计预测技巧。
摘要由CSDN通过智能技术生成

目录

赛题介绍

赛题数据

评估指标

Baseline 介绍

1、导入所需的库

2、图像格式解读

3、模型训练

 总结

赛题介绍

脑PET图像检测数据库,记录了老年人受试志愿者的脑PET影像资料,其中包括确诊为轻度认知障碍(MCI)患者的脑部影像数据和健康人(NC)的脑部影像数据。

赛题数据

大赛所用脑PET图像检测数据库,图像格式为nii。

文件夹名称格式解释
NCnil健康
MCInil轻度认知障碍

 其中,NC表示健康,MCI表示轻度认知障碍。

评估指标

评价标准采用F1_score

$\begin{aligned} & \text { Precision }=\frac{T P}{T P+F P} \\ & \text { Recall }=\frac{T P}{T P+F N} \\ & \text { F1-score }=\frac{2 \times \text { Precision } \times \text { Recall }}{\text { Precision+Recall }}\end{aligned}$

True Positive (TP): 把正样本成功预测为正。

True Negative (TN):把负样本成功预测为负。

False Positive (FP):把负样本错误地预测为正。

False Negative (FN):把正样本错误的预测为负。

Precision着重评估:在预测为Positive的所有数据中,真实Positve的数据到底占多少。

Recall着重评估:在所有的Positive数据中,到底有多少数据被成功预测为Positive。

Baseline 介绍

1、导入所需的库

glob库,用来查找文件目录和文件,并将搜索的到的结果返回到一个列表中。

numpy库,用于数值计算。

pandas库,用于数据处理

nibabel库,用于读写医学影像。

OrthoSlicer3D库,用于图像可视化。

第一次使用nibabel库,简单补充一下nibabel用法。

导包import nibabel as nib
加载图片nib.load(path)

2、图像格式解读

数据格式(128,128,63,1)表示一个四维数据,其中每个维度的含义如下:

第一个维度:大小为128,表示数据的x轴维度,通常对应于图像的宽度。

第二个维度:大小为128,表示数据的y轴维度,通常对应于图像的高度。

第三个维度:大小为63,表示数据的z轴维度,通常对应于图像的深度或切片数量。在医学图像中,这通常表示图像在空间中的不同层次或位置。

第四个维度:大小为1,表示数据的通道数。在这种情况下,通道数为1,表明这是一个单通道的图像或数据。对于RGB图像来说,通常会有3个通道(红、绿、蓝)。

综上所述,(128, 128, 63,1)表示一个大小为128x128的单通道三维图像数据,其中有63个切片(或层次)。这种数据格式常用于医学图像,如MRI (磁共振成像)和CT (计算机断层扫描)图像。每个切片都是一-个128x128的二维图像,共有63个切片,表示不同位置的横断面图像。每个像素点包含-一个灰度值,表示图像的强度或密度。

3、模型训练

本次任务是一个二分类任务(MCI和NC),Baseline使用逻辑回归来对模型进行训练。

除此之外,在Baseline中,还可以将逻辑回归替换成支持向量机决策树随机森林K近邻算法朴素贝叶斯多层感知器卷积神经网络

Baseline的分数:0.48485。

Baseline的Fork地址:基于logistic回归的脑PET图像分析和疾病预测-baseline - 飞桨AI Studio

大佬讲解:【AI夏令营】CV赛题解析与Baseline逐行精读_哔哩哔哩_bilibili

总结

使用机器学习的方法来进行预测,分数普遍偏低,接下来将准备尝试使用卷积神经网络或者Transfomer解决这个问题,但是通过Baseline中机器学习的方法,我掌握了如何将图片特征转化为一些统计量,通过多个统计量进行预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值