- 博客(7)
- 收藏
- 关注
原创 【花书笔记】深度学习 11. 实践方法论
一个优秀的机器学习实践者需要知道如何针对具体应用挑选一个合适的算法以及如何监控,病根据实验反馈改进机器学习系统。在机器学习系统的日常开发中,实践者需要决定是否收集更多的数据、增加或者见啥模型容量、添加或删除正则化向、改进模型的优化、改进模型的近似腿短或调试魔性的软件实现。尝试这些操作都需要大量时间,因此确定正确的做法,而不是盲目猜测尤为重要。建议参考一下几个实践设计流程:确定目标—使用什么误差度量,并为此误差度量指定目标值。这些目标和误差度量取决于该应用旨在解决的问题尽快建立一个端到端的工作流程,包
2020-06-06 23:21:27 508
原创 Machine Learning in Action 5. Logistic Regression
1. Logistic Regression解决问题: 二分类问题(binary classification)分类器: 为了实现logistic回归分类起,可以在每个特征上都乘以一个回归系数(权重),把所有结果值相加,总和代入sigmoid函数中,从而得到一个范围在0-1之间的数值。任何大于0.5的数被分入1类,小于0.5被分入0类。 所以logistic regression可以堪称是一种概率估计。损失函数/代价函数:对数似然损失(crossentropy 交叉熵) 公式如下图2优化方法: 梯度
2020-06-04 16:55:20 173
原创 5. 机器学习实战之逻辑回归处理UCI乳腺癌数据集
乳腺癌数据集http://mlr.cs.umass.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
2020-06-03 15:29:46 11761 1
原创 4. 机器学习实战 之 泰坦尼克号生存预测问题
学习机器学习的小伙伴,在入门的时候可以通过相对赶紧简单和干净的数据入门。 最常用的数据集就是我在之前写的MNIST,波士顿房价,还有今天要给大家介绍的泰坦尼克号生存预测问题。泰坦尼克号的故事背景大家一定都非常熟悉了,下面我们一起来探索一下相关数据,以及看看如何用机器学习的方法进行分类预测。数据加载本数据也是Kaggle平台的入门数据之一,可以同Kaggle平台下载训练数据和测试数据,这个竞赛项目也是长年开放的,大家也可以将自己的预测结果上传到Kaggle上。https://www.kaggle.co
2020-05-29 17:59:33 1554 1
原创 3. 机器学习之实战 之 线性回归处理波士顿房价问题
波士顿房价问题波士顿的房价为什么那么贵呢? 可以用什么方法预测房价呢? 这里的波士顿房价显然是连续变量,所以这个问题我们可以用回归来尝试解决。今天我们就从最简单的线性回归来入门吧数据加载波士顿房价的数据源Kaggle上也是免费开放的,Python的sklearn 数据集也可以直接loadfrom sklearn.datasets import load_bostonboston_dataset = load_boston()我们一起来看一下这个数据集print(boston_dataset
2020-05-28 16:20:42 2214
原创 2. 机器学习实战之 CNN训练CIFAR10数据集
CIFAR10 数据集介绍CIFAR10数据集与MNIST都是入门级数据集, 该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。 这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试数据加载import tensorflow as tffrom keras.datasets import cifar10import matplotlib.pyplot as plt from keras.utils import to_
2020-05-28 15:46:31 1166
原创 1. 机器学习实战 之 CNN处理MNIST数据集
MNIST数据集介绍MNIST数据是手写的数字图像, 这些数据已经被size-normalized and centered in a fixed-size image. 算是非常干净的数据集. 学习CNN或者RNN都可以从这个数据集入门,下面让我们来一起了解如何实现CNN的“Hello Wold”吧~MNIST数据可视化有人说过一句话让我印象深刻,做机器学习要不忘初心,研究算法之前要认识和了解数据!那我们先来揭开MNIST数据的面纱。数据可以在Kagglep平台上下载 https://www.
2020-05-28 15:21:52 1266
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人