torch.randint(len(training_data), size=(1,)).item()的理解

  • torch.randint(3, 5, (3,2)):生成一个随机值范围在[3,5)之间,shape=(3,2)的二维张量。
torch.randint(3, 5, (3,2))
>>>
tensor([[4, 4],
        [4, 4],
        [4, 3]])
  • torch.randint(3, 5, (3,)):生成一个随机值范围在[3,5)之间,shape=(3,)的一维张量。
orch.randint(3, 5, (3,))
>>>
tensor([3, 3, 4])

torch.randint()函数中,size参数不可省略,并且生成一维数组时,需要在后面加上逗号,否则会报错。

torch.randint(len(training_data), size=(1,)).item()
>>>
4

torch数据类型的item()方法得到【只有一个元素的张量】里边的【元素值】。

x = torch.tensor(4)
x.item()
>>>
4

如果对包含多个元素的torch.tensor使用item()方法,则会报错。 如下:

x = torch.tensor([4,2,4])
x.item()
>>>
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/var/folders/39/ltj3xcv91_1dqzzsgmwy0s980000gn/T/ipykernel_92991/1458394228.py in <module>
      1 x = torch.tensor([4,2,4])
----> 2 x.item()

ValueError: only one element tensors can be converted to Python scalars

只要是只有一个元素,不论维度如何,都可以使用item()方法,取出该元素。 如下:

x = torch.tensor([[[4]]])
x.item()
>>>
4

高阶示例:

training_data = ['cat' ,'dog', 'sheep']
import torch
torch.randint(len(training_data), size=(1,)).item()
>>>
0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yale曼陀罗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值