题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路
因为是树的结构,一般都是用递归来实现。
用数学归纳法的思想就是,假设最后一步,就是root的左右子树都已经重建好了,那么我只要考虑将root的左右子树安上去即可。
根据前序遍历的性质,第一个元素必然就是root,那么下面的工作就是如何确定root的左右子树的范围。
根据中序遍历的性质,root元素前面都是root的左子树,后面都是root的右子树。那么我们只要找到中序遍历中root的位置,就可以确定好左右子树的范围。
正如上面所说,只需要将确定的左右子树安到root上即可。递归要注意出口,假设最后只有一个元素了,那么就要返回。
python
# -*- coding:utf-8 -*-
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# 返回构造的TreeNode根节点
def reConstructBinaryTree(self, pre, tin):
# write code here
if not pre or not tin:
return None
root = TreeNode(pre.pop(0))
index = tin.index(root.val)
root.left = self.reConstructBinaryTree(pre,tin[:index])
root.right = self.reConstructBinaryTree(pre,tin[index+1:])
return root
c++
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
struct TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in) {
int inlen=in.size();
if(inlen==0)
return NULL;
vector<int> left_pre,right_pre,left_in,right_in;
//创建根节点,根节点肯定是前序遍历的第一个数
TreeNode* head=new TreeNode(pre[0]);
//找到中序遍历根节点所在位置,存放于变量gen中
int gen=0;
for(int i=0;i<inlen;i++)
{
if (in[i]==pre[0])
{
gen=i;
break;
}
}
//对于中序遍历,根节点左边的节点位于二叉树的左边,根节点右边的节点位于二叉树的右边
//利用上述这点,对二叉树节点进行归并
for(int i=0;i<gen;i++)
{
left_in.push_back(in[i]);
left_pre.push_back(pre[i+1]);//前序第一个为根节点
}
for(int i=gen+1;i<inlen;i++)
{
right_in.push_back(in[i]);
right_pre.push_back(pre[i]);
}
//和shell排序的思想类似,取出前序和中序遍历根节点左边和右边的子树
//递归,再对其进行上述所有步骤,即再区分子树的左、右子子数,直到叶节点
head->left=reConstructBinaryTree(left_pre,left_in);
head->right=reConstructBinaryTree(right_pre,right_in);
return head;
}
};