腾讯游戏开发了一款全新的编程类益智小游戏,榜首的题目是一道关于矩阵的计算,你用多久能计算出来呢?
游戏中给出一个 N×M 的矩阵,若其中填入的内容是数字 1∼N×M 的排列,求问有多少种不等价的矩阵?
等价矩阵:若一个矩阵 A 可以通过交换其中两行或者两列变成另一个矩阵 B,则称 A 和 B 等价。且若 A 和 B 等价,B 和 C 等价,则 A 和 C 也等价。
答案对 998244353 取模。
说明:
当你计算一个答案需要对某大质数取模的问题时,加减乘都是可以中途取模的,例如 (A+B+C)%mod 可以改为 ((A+B)%mod+C)%mod,这样可以防止运算溢出,而结果不变,注意,当你需要计算除法时,譬如计算 (A/B)%mod,也许 A 和 B本身很大很大,但是经过取模后变成一个相对较小的数,这里再这么算是不对的,比如 mod=7 时,30/10 的结果本来是 3,但是 A 和 B 对 7 取模后变成了 2/3,直接计算得到 0,就产生了错误,你可以使用下面的代码中 inv 函数,当你需要计算 A/B%mod 时可以改写成 (A%mod)∗inv(B%mod)%mod,前提是 B 不为 0(在模 mod 后不为 0),注意数据溢出问题,你可能需要使用 long long 类型。inv 函数的复杂度为 O(logmod)。
long long inv(long long x){
long long b = mod - 2,ans = 1;
while(b){