python数学建模导论1.5 整数规划与指派问题的求解

本文演示了使用Python的scipy.optimize.linear_sum_assignment函数解决指派问题,通过一个成本矩阵实例展示了如何找到最优匹配,并计算总成本。此外,还提供了相关链接以获取更多详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python数学建模导论1.5 整数规划与指派问题的求解 18:25

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述 在这里插入图片描述

from scipy.optimize import linear_sum_assignment
import numpy as np

cost = np.array([[25, 29, 31, 42], [39, 38, 26, 20], [34, 27, 28, 40], [24, 42, 36, 23]])
row_ind, col_ind = linear_sum_assignment(cost)
print(row_ind)  # 开销矩阵对应的行索引
print(col_ind)  # 对应行索引的最优指派的列索引
print(cost[row_ind, col_ind])  # 提取每个行索引的最优指派列索引所在的元素,形成数组print(cost[row ind,col ind].sum())#数组求和
print(cost[row_ind,col_ind].sum)

optimize.linear_sum_assignment指派问题函数,详看链接文章:
https://blog.csdn.net/qq_51570094/article/details/124020861

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值