机器学习(CNN)大写中文数字(电脑自带字体),精确识别书法体

这篇博客介绍了一个使用Keras实现的卷积神经网络(CNN)模型,用于识别电脑自带字体中的中文数字。作者首先收集了大约30种字体的样本,通过调整大小增加样本多样性。然后构建了一个包含多个卷积层和池化层的CNN模型,并使用ImageDataGenerator进行数据增强。模型训练完成后,展示了在测试集上的表现,并保存了模型。最后,展示了如何使用该模型对网上找的图片进行识别,效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一步:准备训练样本
样本比较单一,采用电脑自带可用字体,经筛选,大概只有不到30个。通过调节大小,使其尽量丰富.

# encoding = utf-8
import numpy as np
import os
import cv2
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import time
import random

# 创建汉字背景图片
def backgroundPic():
    img = np.ones((600, 600), dtype=np.uint8)
    cv2.imwrite(r'background.jpg', img)
    img = cv2.imread(r'o.jpg')
    ret, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY)
    cv2.imwrite(r'background.jpg', img)
    img = Image.open('o.jpg')
    return img

def writeChineseWord(chineseWord, directory):
    img = backgroundPic()
    # 可用字体列表
    usable_font = ['SIMYOU.TTF', 'simsun.ttc', 'simsun.ttc', 'SIMLI.TTF', 'simkai.ttf', 'simhei.ttf', 'STCAIYUN.TTF',
                   'STFANGSO.TTF', 'STXINGKA.TTF', 'STHUPO.TTF', 'STKAITI.TTF', 'STHUPO.TTF', 'STKAITI.TTF',
                   'STHUPO.TTF', 'STKAITI.TTF', 'STLITI.TTF', 'STSONG.TTF', 'STXIHEI.TTF', 'STXINWEI.TTF',
                   'STZHONGS.TTF', 'simfang.ttf', 'FZYTK.TTF', 'FZSTK.TTF', 'AliHYAiHei.ttf',
                   'msgothic.ttc',   'msgothic.ttc', 'msgothic
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值