数据结构05:树与二叉树[C++][树:双亲、孩子、兄弟表示法][二叉树:先序、中序、后序遍历]

笔记整理涵盖约4万字,聚焦数据结构中树与二叉树概念、存储结构、遍历算法等,提供代码实践与思维导图辅助理解。内容友好适合初学者,含双亲、孩子表示法等,附实例代码与非递归遍历解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 考研笔记整理约4.0w字,小白友好、代码可跑的笔记整理,请小伙伴放心食用~🥝🥝

  • 第1版:查资料、写BUG、画导图、画配图ing~🧩🧩
  • 第2版:对于树的存储结构部分补充代码,并提供了预设的小树模型供小伙伴测试(去年我曾热衷手动键入所有代码,觉得亲手构建一棵树超级酷炫!)。同时,调整了一些细节。新增代码应该能在大多数在线平台上流畅运行吧我猜...如果遇到问题,欢迎再评论区指出,我会迅速响应并进行修正~🧩🧩

参考用书:王道考研《2024年 数据结构考研复习指导》

参考视频:5.1.1 树的定义和基本术语_哔哩哔哩_bilibili

特别感谢:衷心感谢Chat GPT和文心一言在代码校验环节给予的支持。Chat GPT对旧版代码及其解释部分进行了严格审核,而文心一言则帮助审核了新增代码和相关配图。


目录

思维导图

树的概念

树的基本术语

树的基本性质

树的存储结构

双亲表示法

代码(键入小树) 

代码(预置小树) 

孩子表示法

代码(键入小树) 

代码(预置小树)  

孩子兄弟表示法

​编辑​代码(键入小树) 

代码(预置小树)   

二叉树

二叉树的概念

定义

特殊的二叉树

二叉树的性质

二叉树的存储结构

二叉树的遍历

先序、中序、后序遍历的定义与手动推算

先序、中序、后序遍历的核心代码

结语

备注:模板篇幅限制就只能写这么长了,线索二叉树及树的应用见下篇~


思维导图


树的概念

树的定义:树是n(n≥0)个结点的有限集。当n=0时,称为空树。在任意一棵非空树应满足:

  • 有且仅有一个特定的称为根的结点。
  • 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合本身又是一棵树,并且称为根的子树。 //因此,树是递归的数据结构

树的基本术语

图:树的图形表示+术语注释 

 (1)结点、度

  • 结点:一种数据结构,包含数据和对一个或多个其他节点的引用(例如:指针)。
    • 根结点:树的根节点没有前驱,除根结点以外的所有结点有且仅有1个前驱;
    • 分支结点:除根节点外,度>0的结点称为分支结点;
    • 分支结点:除根节点外,度 = 0的结点称为分支结点;
  • 结点关系:
    • 祖先结点:从根结点到指定结点的路径上的所有结点,例如结点A、B、E均为结点K的祖先结点;
    • 子孙结点:从指定结点到叶子点的路径上的所有结点,例如结点K、L、F均为结点B的子孙结点;
    • 双亲结点:祖先结点中最接近指定结点的结点,例如结点E是结点K、L的双亲结点。
    • 孩子结点:子孙结点中最接近指定结点的结点,例如结点E、F是结点B的孩子结点。
    • 兄弟结点:具有相同父节点的两个结点,例如结点K与结点L是兄弟结点。
  • 度数:
    • 结点的度:树中一个结点的孩子个数称为度数。
    • 树的度:树中结点的最大度数称为数的度。例如图中结点的度数为3,因此这棵树的结点就是3。

(2)层次、深度、高度:

  • 层次:一个节点的层级是从根节点到该节点的边数。
  • 高度:树中结点的最大层数。

(3)路径:

  • 路径:两个结点之间的路径是由这两个结点之间所经过的结点序列构成的;
  • 结点的路径长度:两个指定结点路径上经过的边的个数。
  • 树的路径长度:树根到每个结点的路径长度的总和。

(4)有序、无序:

  • 有序树:是节点按特定顺序排列的树,结点之间不能互换,例如二叉搜索树。
  • 无序树:是指节点未按任何特定顺序排列的树。

树的基本性质

(1)结点与结点、结点与边

  • n个结点的树 有 n-1条边;// 根节点无前驱,因此无指向根结点的边~
  • 树中的结点数 - 1 =\sum​所有结点的度数; // 结点的度数代表孩子结点的个数,根节点为特殊的无前驱的结点,因此需要 -1;

(2)结点与度

  • 度为m的树,在第 i 层上结点数 ≤ m^(i-1); // 按照结点的度均为m的情况考虑,第1层最多有m^(1-1)=1个结点,第2层最多有m^(2-1)=m个结点...递推可求~

(3)结点与高

  • 高度为h的m叉树 结点数 n ≤ (m^h -1)/(m-1); // 等比公式可求,Sn=首项(1-公比的n次方)/(1-公比)

嗯,这个我们以满3叉树(m=3)举栗:

结点与高度的公式推算
层数(h)本层最多结点数首层累加至本层结点数
3叉树第1层m^(h-1)=3^(1-1)= 13^0 = 1
3叉树第2层m^(h-1)=3^(2-1)= 33^0 + 3^1 = 4
3叉树第3层m^(h-1)=3^(3-1)= 93^0 + 3^1 + 3^2 = 13
3叉树第4层m^(h-1)=3^(4-1)= 273^0 + 3^1 + 3^2+ 3^3 = 40
.........
3叉树第h层m^(h-1)=3^(h-1)

3^0 + 3^1 + 3^2+ ... +3^(h-1)

=  1 x(1- 3^h)/(1-3)

=(3^h -1)/ (3-1)

m叉树第h层m^(h-1)(m^h -1)/ (m-1)

树的存储结构

双亲表示法

描述:(1)采用一组连续空间来存储每个结点(下图表中data位),(2)同时在每个结点中增加一个伪指针,指示其双亲结点在数组中的位置(下图表中parent位),其中根节点的parent=-1。

特点:

  • 简洁直观:相比其它存储方式易于理解与实现。
  • 存储结构:顺序存储和链式存储均可实现,其中顺序存储较为常见。
  • 存取效率:可以很快得到每个结点的双亲结点,但求孩子结点时需要遍历整个结构;不过这并不是硬伤,可以根据需要在结构体中增加一个用于存放孩子结点的伪指针,这样做会牺牲一些存储空间。    // 所以这里叫做顺序存储法是不是比双亲存储法更合适一些~~
  • 是否有序:双亲表示法不适合表示有序树,更适合表示无序树,因为无序树中节点的子节点没有明确的顺序关系。

图示:源于《王道》教材图5.14 树的双亲表示法

双亲表示法 核心代码:

#define MAX_TREE_SIZE 100   //树中可以存储的结点数

typedef struct{     //树中结点的结构,该结构有两个字段
    ElemType data;   //该字段存储结点的数据元素
    int parent;      //该字段存储结点的双亲指针(伪指针)
}PTNode;

typedef struct{     //树的结构,该结构有两个字段
    PTNode nodes[MAX_TREE_SIZE];   //结构数组,用于存储树中的结点
    int n;                         //树中的结点数
}PTree;

双亲表示法 案例:

要求:1 树的构建;2 树的遍历;3 按值查找某节点,并寻找其父结点与子节点;4 按位查找某节点,并输出其祖先结点与子孙结点~

思路:

LocateElem封装按值查找函数,并寻找双亲与孩子结点~

  1. 用参数i记录并遍历本结点的位序;
  2. 找到目标结点后,输出当前结点的信息,将父结点的信息赋值给j并输出;

  3. 通过循环寻找并输出孩子结点的信息,同时记录子结点的数量;如果子结点的数量为0,则输出没有子结点的提示信息;[这一步时间开销会很高,仅寻找相邻结点];

  4. 如果遍历到末尾没有找到结点,则输出没有该结点的提示信息。

get封装按位查找函数,并寻找祖先与子孙结点~

  1. 判断树中是为空,如果是,返回错误;如果否,继续执行;
  2. 判断值是否越界,如果是,返回错误;如果否,继续执行;
  3. 输出目标结点的data与parent;
  4. 通过递归寻找并输出祖先/子孙结点的信息,同时记录子结点的数量;如果子结点的数量为0,则输出没有子结点的提示信息;如果父节点已为根结点,则反馈到第2步;[这一步时间开销会很高,可寻找所有祖先/子孙结点]; 

代码(键入小树) 
#include <iostream>
#define MAX_TREE_SIZE 100  // 树的最大节点数量

typedef struct {
    char data;  // 节点数据
    int parent;  // 双亲节点的索引
} PTNode;

typedef struct {
    PTNode nodes[MAX_TREE_SIZE];  // 节点数组
    int n;  // 当前节点数目
} PTree;

// 初始化树对象
void InitTree(PTree* tree) {
    for (int i = 0; i < MAX_TREE_SIZE; i++) {
        tree->nodes[i].data = 0;  // 将节点数据初始化为0
        tree->nodes[i].parent = -1;  // 将节点的双亲索引初始化为-1
    }
    tree->n = 0;  // 初始化节点数量为0
}

// 添加节点到树中
void addNode(PTree* tree, char data, int parentIndex) {
    if (tree->n >= MAX_TREE_SIZE) {  // 如果树已满,不能再添加数据
        std::cout << "错误:树已满,不能再添加数据。\n";
        return;
    }

    PTNode newNode;
    newNode.data = data;  // 设置新节点的数据

    if (parentIndex < 0) {
        newNode.parent = -1;  // 如果双亲索引小于0,则表示没有双亲节点
    }
    else {
        newNode.parent = parentIndex;  // 否则,将双亲索引设置为给定的索引值
    }

    tree->nodes[tree->n] = newNode;  // 将新节点添加到节点数组中
    tree->n++;  // 更新节点数量
}

// 按值查找节点
void LocateElem(const PTree* tree, char data) {
    int i, j;
    int childCount = 0;
    int firstChildPos = -1;

    for (i = 0, j = -1; i < tree->n; i++) {
        if (tree->nodes[i].data == data) {  // 如果找到匹配的节点
            std::cout << "找到结点 " << data << std::endl;
            std::cout << "当前结点信息:" << "位置: " << i << ", 数据: " << tree->nodes[i].data << ", 双亲位置: " << tree->nodes[i].parent << std::endl;

            j = tree->nodes[i].parent;
            if (j != -1) {
                std::cout << "父节点信息:" << "位置: " << j << ", 数据: " << tree->nodes[j].data << ", 双亲位置: " << tree->nodes[j].parent << std::endl;
            }

            for (int k = 0; k < tree->n; k++) {
                if (tree->nodes[k].parent == i) {
                    if (childCount == 0) {
                        firstChildPos = k;
                    }
                    std::cout << "子节点信息:" << "位置: " << k << ", 数据: " << tree->nodes[k].data << ", 双亲位置: " << tree->nodes[k].parent << std::endl;
                    childCount++;
                }
            }

            if (childCount == 0) {
                std::cout << "该结点没有子节点" << std::endl;
            }
            else {
                std::cout << "子节点数量: " << childCount << std::endl;
                //std::cout << "第一个子节点信息:" << "位置: " << firstChildPos << ", 数据: " << tree->nodes[firstChildPos].data << ", 双亲位置: " << tree->nodes[firstChildPos].parent << std::endl;
            }

            return;
        }
    }

    std::cout << "未找到结点 " << data << std::endl;
}

// 获取节点的子孙节点
void GetOffspring(const PTree& tree, int index) {
    if (index < 0 || index >= tree.n) {  // 检查索引是否越界
        std::cout << "错误:索引越界。\n";
        return;
    }

    const PTNode& currentNode = tree.nodes[index];

    std::cout << "结点位置: " << index << ", 数据: " << currentNode.data << ", 父节点位置: " << currentNode.parent << std::endl;

    int childCount = 0;

    for (int i = 0; i < tree.n; i++) {
        if (tree.nodes[i].parent == index) {  // 如果节点的双亲索引与给定索引相等,则表示是其子节点
            childCount++;
            GetOffspring(tree, i);  // 递归调用以获取孩子节点的子节点
        }
    }

    if (childCount == 0) {
        std::cout << "该结点没有孩子结点。\n";
    }
}

// 获取节点的祖先节点
void GetAncestors(const PTree& tree, int index) {
    if (index < 0 || index >= tree.n) {  // 检查索引是否越界
        std::cout << "错误:索引越界。\n";
        return;
    }

    const PTNode& currentNode = tree.nodes[index];

    std::cout << "结点位置: " << index << ", 数据: " << currentNode.data << ", 父节点位置: " << currentNode.parent << std::endl;

    int parentIndex = currentNode.parent;
    if (parentIndex >= 0) {
        GetAncestors(tree, parentIndex);  // 递归调用以获取祖先节点的祖先节点
    }
}

int main() {
    PTree newtree;
    // 初始化树对象
    InitTree(&newtree);

    // 增加节点
    char data;
    int parentIndex;
    while (std::cout << "输入结点: " && std::cin >> data && data != '\\') {
        std::cout << "输入结点的双亲位置: ";
        std::cin >> parentIndex;
        addNode(&newtree, data, parentIndex);
    }

    std::cout << std::endl;

    // 输出结点
    for (int i = 0; i < newtree.n; i++) {
        std::cout << "结点位置: " << i << ", 数据: " << newtree.nodes[i].data << ", 父节点位置: " << newtree.nodes[i].parent << std::endl;
    }

    std::cout << std::endl;

    // 输出按值查找结点信息
    char target1;
    std::cout << "请输入要按值查找的结点: ";
    std::cin >> target1;
    LocateElem(&newtree, target1);

    std::cout << std::endl;

    // 输出子孙结点
    int targetIndex1;
    std::cout << "寻找该位序的子孙结点: ";
    std::cin >> targetIndex1;
    GetOffspring(newtree, targetIndex1);

    std::cout << std::endl;

    // 输出祖先结点
    int targetIndex2;
    std::cout << "寻找该位序的祖先结点: ";
    std::cin >> targetIndex2;
    GetAncestors(newtree, targetIndex2);

    return 0;
}

运行的效果如下图所示:

代码(预置小树) 
#include <iostream>
#include <vector>
using namespace std;

// 定义树节点类  
class PTNode {
private:
	char data;		    // 节点数据
	int parent;		    // 双亲节点的索引
    friend class PTree; // 声明PTree类为友元,以便访问私有成员  
public:
	PTNode() : data(0), parent(-1) {}							  // 默认构造函数  
	PTNode(char data, int parent) : data(data), parent(parent) {} // 带参数的构造函数
	~PTNode() {}												  // 析构函数  
};

// 定义树类  
class PTree {
private:
	vector<PTNode> nodes;	// 节点数组,存储树的节点  
	int n;					// 当前节点数目
public:
	PTree() : n(0) {}		// 默认构造函数  
	~PTree() {}				// 析构函数  

	bool AddNode(char data, int ParentIndex);	// 添加节点到树中  
	bool DeleteNode(int index, char& data);		// 从树中删除指定索引的节点  

	bool CreateTree();								  // 预置一个小树用于测试  
	bool LocateElem(char& data, char*& DataAddress);  // 查询节点是否存在,并获取其父节点和子节点信息  
	void PrintTree() const;							  // 打印树的信息 
};

// 添加节点
bool PTree::AddNode(char data, int ParentIndex) {
	nodes.push_back(PTNode(data, ParentIndex));
	n++;
	return true;
}

// 删除节点
bool PTree::DeleteNode(int index, char& data) {
	// 只有根节点时,可以删除根节点
	if (index == 1 && n == 1) {
		nodes.pop_back();
		n--;
		return true;
	}

	// 检查索引越界,这里不允许删除根节点,不然小树可能会分裂成小森林
	if (index < 1 || index >= n || nodes.empty()) {
		return false;
	}

	// 将待删除的子节点的父节点指向爷爷节点
	data = nodes[index].data;
	for (int i = 0; i < n; i++) {
		if (nodes[i].parent == index)
			nodes[i].parent = nodes[index].parent;
	}

	// 交换待删除的子节点与最后一个节点(偷懒,避免大量移动元素)
	if (index != n - 1) {
		swap(nodes[index].data, nodes[n - 1].data);
		swap(nodes[index].parent, nodes[n - 1].parent);
	}

	// 删除最后一个节点
	nodes.pop_back();
	n--;
	return true;
}

// 预置小树
bool PTree::CreateTree() {
	AddNode('R', -1);
	AddNode('A', 0);
	AddNode('B', 0);
	AddNode('C', 0);
	AddNode('D', 1);
	AddNode('E', 1);
	AddNode('F', 3);
	AddNode('G', 6);
	AddNode('H', 6);
	AddNode('K', 6);
	return true;
}

 键入树
//bool PTree::CreateTree() {
//	char data;
//	int ParentIndex;
//	do {
//		cout << "输入节点: ";
//		cin >> data;
//		if (data == '\\') { // 检查用户是否输入了 '\' 作为结束标志  
//			break;
//		}
//		cout << "输入节点的父节点位置: ";
//		cin >> ParentIndex;
//		AddNode(data, ParentIndex);
//	} while (true);			// 无限循环,通过输入 '\' 来退出  
//  return true;
//}

// 打印小树
void PTree::PrintTree() const{
	for (int i = 0; i < n; i++) {
		cout << "节点位置:" << i << ", ";
		cout << "数据:" << nodes[i].data << ", ";
		cout << "父结点位置:" << nodes[i].parent << endl;
	}
}

// 实现查询本节点是否存在,如果存在,获取子节点、获取父节点
bool PTree::LocateElem(char& data, char*& DataAddress) {
	int i = 0;
	bool flag = false;

	while (i < n) {
		if (nodes[i].data == data) {
			cout << "找到当前节点!" << data << endl;
			cout << "当前节点位置:" << i << ", ";
			cout << "当前节点数据:" << nodes[i].data << endl;
			if (nodes[i].parent != -1) {
				cout << "其父结点位置:" << nodes[i].parent << ", ";
				cout << "其父节点数据:" << nodes[nodes[i].parent].data << endl;
			}
			else {
				cout << "该节点没有父节点。" << endl;
			}
			DataAddress = &nodes[i].data;
			flag = true;
			break;	// 结束循环
		}
		i++;
	}

	if(flag == false){ return false; }

	int j = 0;
	int ChildCount = 0;

	while (j < n) {
		if (nodes[j].parent != -1 && nodes[j].parent < n && nodes[nodes[j].parent].data == data) {
			cout << "孩子节点位置:" << j << ", ";
			cout << "孩子节点数据:" << nodes[j].data << endl;
			ChildCount++;
		}
		j++;
	}
	if (ChildCount == 0) {
		cout << "没有孩子节点-" << endl;
	}
	else {
		cout << "孩子节点共有:" << ChildCount << " 个" << endl;
	}

	return true;
}

int main() {
	cout << "准备构建小树:" << endl;
	PTree newtree;						  	  // 创建一个新的树对象  
	newtree.CreateTree();			          // 添加节点到树中  
	newtree.PrintTree();				      // 打印树的信息  
	cout << "——手动分割线——" << endl << endl;

	cout << "准备查询节点:" << endl;
	char data = 'F';					      // 要查询的节点数据  
	char* DataAddress = nullptr;		      // 用于存储查询到的节点数据地址的指针  
	cout << "data查询前的地址:" << static_cast<void*>(DataAddress) << endl;
	newtree.LocateElem(data, DataAddress);    // 查询节点并获取相关信息  
	cout << "data查询后的地址:" << static_cast<void*>(DataAddress) << endl;
	cout << "——手动分割线——" << endl << endl;

	cout << "准备删除节点:" << endl;
	newtree.DeleteNode(6, data);		      // 按照索引删除节点,并将被删除节点的数据存储在data中  
	newtree.PrintTree();				      // 打印删除节点后的树信息  
	cout << "被删除的数据:" << data << endl;  // 打印被删除节点的数据  
	cout << "——手动分割线——" << endl << endl;

	return 0; // 程序正常退出  
}

运行的效果如下图所示:

孩子表示法

描述:将每个结点都用单链表链接起来的线性结构,此时n个结点就有n个孩子链表(叶节点的孩子链表为空链表)。

特点:

  • 存储结构:顺序存储法通常由顺序表和链表共同构成。在这种存储方式中,树的整体结构使用顺序表来表示,而每个结点则使用链表来表示其孩子结点。
  • 存取效率:可以很快得到每个结点的孩子结点,方便地动态添加孩子节点,但求双亲结点时需要遍历指针域所指向的n个孩子链表。
  • 是否有序:适用于任意树的存储,包括有序树。由于每个节点的孩子节点都以单链表的形式链接,因此可以灵活地表示任意数量的子节点,并且可以按照节点在链表中的顺序确定子节点的顺序。但是无法区分左右结点。

图示:源于《王道》教材图5.15 树的孩子表示法

孩子表示法 案例:

要求:1 树的构建;2 树的遍历~

备注:经过了多次的失败打击,考虑到时间有限,最后找GPT老师帮我重构逻辑写了一份代码~这段代码我也有很多不懂的地方,尤其是不懂<vector>这个头文件,因此增加了很啰嗦的注释~😢😢

备注+:呃,现在过去了一段时间,再看这份键入代码,好像有点问题;怎么说呢,这肯定是一份能运行的代码,但是不一定能够满足截图的数据结构。可能是我之前的提词有误,或者交给GPT老师修改的代码过于抽象了吧...🫥

思路:

  1. 构建树的核心思想是层次遍历,需要用到辅助队列,关于队列的内容及特性可见👉数据结构03:栈、队列和数组_梅头脑-CSDN博客~
  2. 代码中,我们使用向量 std::vector<CTNode*> nodeQueue 来模拟队列的行为。向量和队列的区别在于:
    1. 数据结构类型:

      • 向量是一种动态数组,可以在末尾快速添加和删除元素,并支持随机访问元素。
      • 队列是一种先进先出(FIFO)的数据结构,只能在队尾添加元素,在队首移除元素。
    2. 添加和删除元素:

      • 向量使用 push_back 方法在末尾添加元素,并使用 erase 方法删除指定位置的元素。
      • 队列使用 push 方法在队尾添加元素,并使用 pop 方法移除队首元素。
    3. 访问元素:

      • 向量可以通过索引直接访问元素,例如 vector[index]
      • 队列只能访问队首元素,使用 front 方法。
  3. 需要注意的是,向量和队列在底层实现和性能上可能存在差异。如果需要严格的队列行为,可以使用标准库中的 std::queue 类,它是专门用于队列操作的数据结构。

  4. 构建树的流程图如下~

代码(键入小树) 
#include <iostream>    //C++标准库中的头文件,提供了输入输出流的功能。在代码中使用std::cout和std::cin进行输出和输入操作。
#include <vector>    //这是C++标准库中的头文件,它包含了std::vector模板类,提供了动态数组的功能。在这段代码中,std::vector<CTNode*>被用来存储和管理树的子结点和结点队列。

// 定义树的结点结构
struct CTNode {
    char data;      // 用于存储结点的数据
    std::vector<CTNode*> children;  // 一个std::vector<CTNode*>类型的容器,用于存储子结点的指针
};

// 定义树的结构
struct CTree {
    CTNode* root;  // 根节点指针
};

// 创建新的树结点
CTNode* createNode(char data) {     //接受一个char类型的参数data,用于传输树结点的数据
    CTNode* newNode = new CTNode();     //创建新的树结点newnode
    newNode->data = data;       //将data的数据赋值给newnode
    return newNode;     //返回newnode的结点指针
}

// 添加孩子节点
void addChild(CTNode* parent, CTNode* child) {      //接受两个参数:parent代表父结点的指针,child代表要添加的子结点的指针。
    parent->children.push_back(child);     //调用 std::vector 类的 push_back() 方法,将 child 添加到 parent->children 的末尾,从而实现了添加子节点的操作。
}

// 初始化树
CTree* initTree() {
    CTree* tree = new CTree();     //创建新的树tree
    tree->root = nullptr;     //树的根节点指针设为空
    return tree;     //返回树的指针
}

// 构建树
void buildTree(CTree* tree) {     //接受树的结构体CTree*的指针tree,用于增加树结点的数据
    //用户键入树的结点数据data
    char data;
    std::cout << "输入根节点数据: ";
    std::cin >> data;

    // 创建根节点
    CTNode* root = createNode(data);    //创建根结点,并将用户输入的data赋值到根节点
    tree->root = root;      //根节点的指针赋值给tree的root成员变量,将根节点连接到树中

    std::vector<CTNode*> nodeQueue;  // 创建辅助队列nodeQueue,其数据类型为树的结点类型CTNode,用于辅助构建树
    nodeQueue.push_back(root);      //调用 std::vector 类的 push_back() 方法,将根节点的指针root添加到结点队列nodeQueue,作为开始构建树的起点

    while (!nodeQueue.empty()) {    //当辅助队列nodeQueue的结点不为空时,执行以下循环
        CTNode* currentNode = nodeQueue.front();    //从辅助队列nodeQueue中获取队首元素的值。nodeQueue.front()获取结点队列的第一个结点的指针,并将其赋值给变量currentNode
        nodeQueue.erase(nodeQueue.begin());     //辅助队列nodeQueue队首元素出队。这行代码使用erase()函数从结点队列中移除第一个结点。begin()函数返回队列的起始迭代器,它指向队列的第一个元素

        //用户键入树的当前结点data赋值到辅助队列的结点currentNode,并键入孩子结点数量childCount
        int childCount;
        std::cout << "输入节点 " << currentNode->data << " 的子节点数量: ";
        std::cin >> childCount;

        //当用户键入的子结点个数<孩子结点数量childCount时,执行以下循环
        for (int i = 0; i < childCount; i++) {
            //用户键入树的孩子结点数据childData
            char childData;
            std::cout << "输入子节点 " << i + 1 << " 的数据: ";
            std::cin >> childData;

            // 创建孩子结点
            CTNode* childNode = createNode(childData);

            // 将孩子结点childNode的值添加到当前结点currentNode的末尾,形成当前结点的孩子链表
            addChild(currentNode, childNode);

            // 将孩子结点childNode加入辅助队列nodeQueue,在下一轮循环中作为父结点构建其孩子链表
            nodeQueue.push_back(childNode);
        }
    }
}

// 输出树的结构
void printTree(const CTree* tree) {
    // 若树为空,返回main函数
    if (tree->root == nullptr) {
        std::cout << "树为空。\n";
        return;
    }

    std::cout << "树的结构:\n";     // 输出文字:“树的结构”

    std::vector<const CTNode*> nodeQueue;   // 在树的结构输出中进行层次遍历。具体为,创建了一个空的向量 nodeQueue作为辅助队列,用于存储树的常量指针CTNode*。
    nodeQueue.push_back(tree->root);    //将根结点root添加到辅助队列nodeQueue的末尾

    while (!nodeQueue.empty()) {    //当辅助队列nodeQueue的结点不为空时,执行以下循环
        const CTNode* currentNode = nodeQueue.front();    //读取辅助队列nodeQueue的队首元素
        nodeQueue.erase(nodeQueue.begin());    //辅助队列nodeQueue的队首元素出队

        std::cout << "结点数据: " << currentNode->data;    // 输出文字:“结点数据”

        if (!currentNode->children.empty()) {    // 当前结点currentNode的孩子结点children不为空时,执行以下循环
            std::cout << ",子节点数据: ";    // 输出文字:“子节点数据”
            for (const CTNode* child : currentNode->children) {    //读取当前结点currentNode的队首孩子结点children
                std::cout << child->data << " ";    // 输出孩子结点的数据
                nodeQueue.push_back(child);    // 队首孩子结点出队
            }
        }

        std::cout << "\n";
    }
}

int main() {
    CTree* tree = initTree();  // 初始化树

    buildTree(tree);  // 构建树

    std::cout << "\n";
    printTree(tree);  // 输出树的结构

    delete tree;  // 释放内存

    return 0;
}

 运行的效果如下图所示:

代码(预置小树)  
#include <iostream>
#include <vector>
#include <queue>
using namespace std;

// 定义树节点类
class CTNode {
private:
	char data;				   // 节点数据
	CTNode* next;			   // 指向兄弟节点的指针(同一层级的下一个节点)  
	CTNode* child;			   // 指向孩子节点的指针  
	friend class CTree;		   // 声明CTree类为友元,以便访问私有成员
public:
	CTNode() : data(0), next(nullptr), child(nullptr) {}				// 默认构造函数
	CTNode(char data) : data(data), next(nullptr), child(nullptr) {}	// 带参数的构造函数
	~CTNode() {}														// 析构函数
};

// 定义树类
class CTree {
private:
	vector<CTNode*> nodes;      // 存储树中所有节点的指针  
public:
	CTree() {}					// 默认构造函数
	~CTree() {}					// 析构函数

	bool AddNode(char date);							// 向树中添加一个新的节点,节点数据为data  
	bool AddChildNode(char data, CTNode* parent);		// 向指定的父节点添加一个孩子节点,节点数据为data  
	bool CreateTree();									// 预置一个小树用于测试
	bool DeleteNode(int index, char& data);		    	// 从树中删除指定节点
	bool LocateElem(char data, CTNode*& NodeAddress);	// 查询节点是否存在,并获取其父节点和子节点信息
	void PrintTree() const;								// 打印树的信息
};

// 向树中添加一个新的节点,节点数据为data  
bool CTree::AddNode(char data) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	return true;
}

// 向指定的父节点添加一个孩子节点,节点数据为data  
bool CTree::AddChildNode(char data, CTNode* parent) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	CTNode* p = parent;
	if (p->child == nullptr) { 
		p->child = newNode; 
	}else {
		p = p->child;
		while (p->next != nullptr) {
			p = p->next;
		}
		p->next = newNode;
	}
	return true;
}

// 预置一个小树用于测试
bool CTree::CreateTree() {
	AddNode('R');
	AddChildNode('A', nodes[0]);
	AddChildNode('B', nodes[0]);
	AddChildNode('C', nodes[0]);
	AddChildNode('D', nodes[1]);
	AddChildNode('E', nodes[1]);
	AddChildNode('F', nodes[3]);
	AddChildNode('G', nodes[6]);
	AddChildNode('H', nodes[6]);
	AddChildNode('K', nodes[6]);
	return true;
}

 键入小树
//bool CTree::CreateTree() {
//	char data = 0; int index = 0;
//	queue<char> queue;
//
//	cout << "添加小树根节点数据:"; 
//	cin >> data;
//	if (data == '\\') return true;
//	AddNode(data);
//	queue.push(data);
//
//	char child = 0;  int childcount = 0;
//	do {
//		data = queue.front();
//		queue.pop();
//		cout << "输入节点" << data << "子节点数量: ";
//		cin >> childcount;
//		int serialcount = 1;
//		while (serialcount <= childcount) {
//			cout << "输入节点" << data << "第" << serialcount << "个子节点的数据:";
//			cin >> child;
//			if (child == '\\') {		// 检查用户是否输入了 '\' 作为结束标志  
//				break;
//			}
//			AddChildNode(child, nodes[index]);
//			queue.push(child);
//			serialcount++;
//		}
//		index++;
//	} while (queue.empty() != true);	// 无限循环,通过输入 '\' 来退出  
//	cout << "——手动分割线——" << endl << endl;
//	return true;
//}

// 打印树的信息
void CTree::PrintTree() const {
	int i = 0; int j = 0;
	for (CTNode* node : nodes) {
		cout << "节点序号:" << i << ",";
		cout << "节点数据:" << node->data << " -> ";
		CTNode* p = node; j = 0;
		if (p->child != nullptr) {
			p = p->child;
			cout << "孩子序号:" << j << ",";
			cout << "孩子数据:" << p->data << " -> ";
			j++;
			while (p->next != nullptr) {
				p = p->next;
				cout << "孩子序号:" << j << ",";
				cout << "孩子数据:" << p->data << " -> ";
				j++;
			}
		}
		cout << "nullptr" << endl;
		i++;
	}
}

// 查询节点是否存在,并获取其父节点和子节点信息
bool CTree::LocateElem(char data, CTNode*& NodeAddress) {
	int childcount = 0;

	for(int i = 0; i < nodes.size(); i++){
		if (nodes[i]->data == data) {
			cout << "找到当前节点!" << data << endl;
			cout << "当前节点位置:" << i << ", ";
			cout << "当前节点数据:" << nodes[i]->data << endl;
			if (nodes[i]->child != nullptr) {
				CTNode* p = nodes[i]->child; 
				childcount++;
				cout << "第 " << childcount << " 子节点数据:" << p->data << endl;
				while (p->next != nullptr) {
					p = p->next;
					childcount++;
					cout << "第 " << childcount << " 子节点数据:" << p->data << endl;
				}
			}
			else {
				cout << "该节点没有子节点。" << endl;
			}
			NodeAddress = nodes[i];
			return true;
		}
	}

	// 找父节点和遍历树的代码类似,有点麻烦且不符合这个数据结构的初衷,这里就不写了~
	return false;
}

// 从树中删除指定节点
bool CTree::DeleteNode(int index, char& data) {
	// 只有根节点时,可以删除根节点
	if (index == 1 && nodes.size() == 1) {
		nodes.pop_back();
		return true;
	}

	// 检查索引越界,这里不允许删除根节点,不然小树可能会分裂成小森林
	if (index < 1 || index >= nodes.size() || nodes.empty()) {
		return false;
	}

	// 找到节点的父节点
	data = nodes[index]->data;
	CTNode* p = nullptr;
	CTNode* parent = nullptr;
	for (int i = 0; i < nodes.size(); i++) {
		if (nodes[i]->child != nullptr) {
			p = nodes[i]->child;
			while (p->data != nodes[index]->data && p->next != nullptr) {
				p = p->next;
			}
			if (p->data == nodes[index]->data) {
				parent = nodes[i];
				cout << "父节点数据:" << parent->data << ", ";
				cout << "父节点位置:" << i << endl;
				break;
			}
		}
	}

	// 将待删除的子节点的父节点指向爷爷节点
	if (nodes[index]->child != nullptr) {
		if (parent->child != nullptr) {
			parent->child = nodes[index]->child;
		}
		else {
			p = parent->child;
			while (p->next != nullptr) {
				p = p->next;
			}
			p->next = nodes[index]->child;
		}
	}

	for (int i = index; i < nodes.size() - 1; i++) {
		nodes[i] = nodes[i + 1];
	}
	nodes.pop_back();

	return true;
}

int main() {
	cout << "准备构建小树:" << endl;
	CTree newtree;                       // 创建一个新的树对象    
	newtree.CreateTree();                // 添加节点到树中    
	newtree.PrintTree();                 // 打印树的信息    
	cout << "——手动分割线——" << endl << endl;

	cout << "准备查询节点:" << endl;
	char data = 'F';					      // 要查询的节点数据  
	CTNode* DataAddress = nullptr;		      // 用于存储查询到的节点数据地址的指针  
	cout << "data查询前的地址:" << static_cast<void*>(DataAddress) << endl;
	newtree.LocateElem(data, DataAddress);    // 查询节点并获取相关信息  
	cout << "data查询后的地址:" << static_cast<void*>(DataAddress) << endl;
	cout << "——手动分割线——" << endl << endl;

	cout << "准备删除节点:" << endl;
	int index = 6;
	char DaleteData = 0;
	newtree.DeleteNode(index, DaleteData);		        // 按照索引删除节点,并将被删除节点的数据存储在data中  
	newtree.PrintTree();							    // 打印删除节点后的树信息  
	cout << "被删除的数据:" << DaleteData << endl;		// 打印被删除节点的数据,CTNode是私有变量不允许访问,被删掉的变量地址太大用处,所以这里不返回节点只返回数据~
	cout << "——手动分割线——" << endl << endl;

	return 0;
}

执行结果如下图~

话说,文心一言老师指出我的删除代码逻辑可能不够严密,提醒我需要考虑叶节点的问题。同时,在处理大型数据时,我目前采用的算法很容易出现问题;另外,在销毁部分也需要更加谨慎,以避免可能的内存泄漏风险。

我的内心OS:出问题就出问题吧,考研算法题只要我写了答案就行,哪怕不是正确答案。至于代码运行不流畅或者存在小bug这种问题,暂时都不重要啦~~😂

(当然,这只是个玩笑话。如果大家在测试过程中真的遇到了问题,欢迎随时到留言区来吐槽,我会尽力改进和优化的~)

——手动分割线——

以下是失败版本记录一下,咳咳,没有兴趣的小伙伴(谁会对这种东西感兴趣...)请迅速跳过~ 

隐藏小标题:代码(预置小树-失败版本1)  

原计划写这样一份代码——

#include <iostream>
#include <vector>
using namespace std;

// 定义树节点类
class CTNode {
private:
	char data;				   // 节点数据
	CTNode* next;			   // 子节点指针
	friend class CTree;		   // 声明CTree类为友元,以便访问私有成员
public:
	CTNode() : data(0), next(nullptr) {}				// 默认构造函数
	CTNode(char data) : data(data), next(nullptr) {}	// 带参数的构造函数
	~CTNode() {}										// 析构函数
};

// 定义树类
class CTree {
private:
	vector<CTNode*> nodes;      // 子节点指针数组
public:
	CTree() {}					// 默认构造函数
	~CTree() {}					// 析构函数

	bool AddNode(char date);							// 添加节点到树中
	bool AddChildNode(char data, CTNode* parent);		// 添加孩子节点到树中
	bool CreateTree();									// 预置一个小树用于测试
	bool DeleteNode(CTNode* Node);						// 从树中删除指定节点
	bool LocateElem(char data, CTNode*& NodeAddress);	// 查询节点是否存在,并获取其父节点和子节点信息
	void PrintTree() const;								// 打印树的信息
};

bool CTree::AddNode(char data) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	return true;
}

bool CTree::AddChildNode(char data, CTNode* parent) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	while (parent->next != nullptr) {
		parent = parent->next;
	}
	parent->next = newNode;
	return true;
}

bool CTree::CreateTree() {
	AddNode('R');
	AddChildNode('A', nodes[0]);
	AddChildNode('B', nodes[0]);
	AddChildNode('C', nodes[0]);
	AddChildNode('D', nodes[1]);
	AddChildNode('E', nodes[1]);
	AddChildNode('F', nodes[3]);
	AddChildNode('G', nodes[6]);
	AddChildNode('H', nodes[6]);
	AddChildNode('K', nodes[6]);
	return true;
}

void CTree::PrintTree() const {
	int i = 0; int j = 0;
	for (CTNode* node : nodes) {
		cout << "节点序号:" << i << ",";
		cout << "节点数据:" << node->data << " -> ";
		CTNode* p = node; j = 0;
		while (p->next != nullptr) {
			p = p->next;
			cout << "孩子序号:" << j << ",";
			cout << "孩子数据:" << p->data << " -> ";
			j++;
		}
		cout << "nullptr" << endl;
		i++;
	}
}

int main() {
	cout << "准备构建小树:" << endl;
	CTree newtree;                       // 创建一个新的树对象    
	newtree.CreateTree();                // 添加节点到树中    
	newtree.PrintTree();                 // 打印树的信息    
	cout << "——手动分割线——" << endl << endl;

	return 0;
}

结果打印出来是这个德性。我想,这里的树可能变成了扁平的单链表。大概在数组里孙子和爷爷都用next链接起来了,所以只要能查询到next指针,可能祖祖辈辈就一起出现了...

因为在单链表中,只有一个next可能是无法区分接下来哪一个是爷爷节点,哪一个是孙子节点的,所以这里干脆增加一个child,每次限制打印孩子节点的数量。嗯,再看一下效果~

隐藏小标题:代码(预置小树-失败版本2)  

#include <iostream>
#include <vector>
using namespace std;

// 定义树节点类
class CTNode {
private:
	char data;				   // 节点数据
	CTNode* next;			   // 子节点指针
	int child;				   // 孩子节点数量
	friend class CTree;		   // 声明CTree类为友元,以便访问私有成员
public:
	CTNode() : data(0), next(nullptr), child(0) {}				// 默认构造函数
	CTNode(char data) : data(data), next(nullptr), child(0) {}	// 带参数的构造函数
	~CTNode() {}												// 析构函数
};

// 定义树类
class CTree {
private:
	vector<CTNode*> nodes;      // 子节点指针数组
public:
	CTree() {}					// 默认构造函数
	~CTree() {}					// 析构函数

	bool AddNode(char date);							// 添加节点到树中
	bool AddChildNode(char data, CTNode* parent);		// 添加孩子节点到树中
	bool CreateTree();									// 预置一个小树用于测试
	bool DeleteNode(CTNode* Node);						// 从树中删除指定节点
	bool LocateElem(char data, CTNode*& NodeAddress);	// 查询节点是否存在,并获取其父节点和子节点信息
	void PrintTree() const;								// 打印树的信息
};

bool CTree::AddNode(char data) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	return true;
}

bool CTree::AddChildNode(char data, CTNode* parent) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	CTNode* p = parent;
	while (p->next != nullptr) {
		p = p->next;
	}
	p->next = newNode;
	parent->child++;
	return true;
}

bool CTree::CreateTree() {
	AddNode('R');
	AddChildNode('A', nodes[0]);
	AddChildNode('B', nodes[0]);
	AddChildNode('C', nodes[0]);
	AddChildNode('D', nodes[1]);
	AddChildNode('E', nodes[1]);
	AddChildNode('F', nodes[3]);
	AddChildNode('G', nodes[6]);
	AddChildNode('H', nodes[6]);
	AddChildNode('K', nodes[6]);
	return true;
}

void CTree::PrintTree() const {
	int i = 0; int j = 0;
	for (CTNode* node : nodes) {
		cout << "节点序号:" << i << ",";
		cout << "节点数据:" << node->data << " -> ";
		CTNode* p = node; j = 0;
		while (p->next != nullptr && j < node->child) {
			p = p->next;
			cout << "孩子序号:" << j << ",";
			cout << "孩子数据:" << p->data << " -> ";
			j++;
		}
		cout << "nullptr" << endl;
		i++;
	}
}

int main() {
	cout << "准备构建小树:" << endl;
	CTree newtree;                       // 创建一个新的树对象    
	newtree.CreateTree();                // 添加节点到树中    
	newtree.PrintTree();                 // 打印树的信息    
	cout << "——手动分割线——" << endl << endl;

	return 0;
}

可以顺利地打印孩子节点的数量,还是依然不能避免把B当作A的孩子这样,看来要调整addnode的逻辑。如果增加一个指针区分兄弟和孩子,会不会好一点呢?

隐藏小标题:代码(预置小树-版本3)  

#include <iostream>
#include <vector>
using namespace std;

// 定义树节点类
class CTNode {
private:
	char data;				   // 节点数据
	CTNode* next;			   // 兄弟节点指针
	CTNode* child;			   // 孩子节点指针
	friend class CTree;		   // 声明CTree类为友元,以便访问私有成员
public:
	CTNode() : data(0), next(nullptr), child(nullptr) {}				// 默认构造函数
	CTNode(char data) : data(data), next(nullptr), child(nullptr) {}	// 带参数的构造函数
	~CTNode() {}														// 析构函数
};

// 定义树类
class CTree {
private:
	vector<CTNode*> nodes;      // 子节点指针数组
public:
	CTree() {}					// 默认构造函数
	~CTree() {}					// 析构函数

	bool AddNode(char date);							// 添加节点到树中
	bool AddChildNode(char data, CTNode* parent);		// 添加孩子节点到树中
	bool CreateTree();									// 预置一个小树用于测试
	bool DeleteNode(CTNode* Node);						// 从树中删除指定节点
	bool LocateElem(char data, CTNode*& NodeAddress);	// 查询节点是否存在,并获取其父节点和子节点信息
	void PrintTree() const;								// 打印树的信息
};

bool CTree::AddNode(char data) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	return true;
}

bool CTree::AddChildNode(char data, CTNode* parent) {
	CTNode* newNode = new CTNode(data);
	nodes.push_back(newNode);
	CTNode* p = parent;
	if (p->child == nullptr) { 
		p->child = newNode; 
	}else {
		p = p->child;
		while (p->next != nullptr) {
			p = p->next;
		}
		p->next = newNode;
	}
	return true;
}

bool CTree::CreateTree() {
	AddNode('R');
	AddChildNode('A', nodes[0]);
	AddChildNode('B', nodes[0]);
	AddChildNode('C', nodes[0]);
	AddChildNode('D', nodes[1]);
	AddChildNode('E', nodes[1]);
	AddChildNode('F', nodes[3]);
	AddChildNode('G', nodes[6]);
	AddChildNode('H', nodes[6]);
	AddChildNode('K', nodes[6]);
	return true;
}

void CTree::PrintTree() const {
	int i = 0; int j = 0;
	for (CTNode* node : nodes) {
		cout << "节点序号:" << i << ",";
		cout << "节点数据:" << node->data << " -> ";
		CTNode* p = node; j = 0;
		if (p->child != nullptr) {
			p = p->child;
			cout << "孩子序号:" << j << ",";
			cout << "孩子数据:" << p->data << " -> ";
			j++;
			while (p->next != nullptr) {
				p = p->next;
				cout << "孩子序号:" << j << ",";
				cout << "孩子数据:" << p->data << " -> ";
				j++;
			}
		}
		cout << "nullptr" << endl;
		i++;
	}
}

int main() {
	cout << "准备构建小树:" << endl;
	CTree newtree;                       // 创建一个新的树对象    
	newtree.CreateTree();                // 添加节点到树中    
	newtree.PrintTree();                 // 打印树的信息    
	cout << "——手动分割线——" << endl << endl;

	return 0;
}

好像可以哎,开心!用这个代码调一调,应该就是题目要求的效果了。啊,也就是前文那一大段预置小树代码~

孩子兄弟表示法

描述:孩子兄弟表示法又称为二叉树表示法,它使用二叉链表作为树的存储结构。在孩子兄弟表示法中,每个节点包括三个部分的内容:结点值、指向该结点的第一个孩子结点的指针,以及指向该结点的下一个兄弟结点的指针(通过这个指针可以找到该结点的所有兄弟结点)。 //因此在存储时会转换为二叉树~

树与二叉树的转换:每个结点左指针指向它的第一个孩子,右指针指向它在树中相邻的右兄弟,这个规则又称“左孩子右兄弟”。由于根结点没有右兄弟,所以对应的二叉树没有右子树。

特点:

  • 存储结构:顺序存储法通常由链表构成。
  • 存取效率:这种存储表示法比较灵活,其最大的优点是可以方便地实现树转换为二叉树的操作,易于查找结点的孩子等,但缺点是从当前结点查找其双亲结点比较麻烦。若为每个结点增设一个parent域指向其父结点,则查找结点的父结点也很方便。
  • 是否有序:适用于任意树的存储,包括有序树。

图示:源于《王道》教材图5.15 树的孩子兄弟表示法

孩子兄弟表示法 案例:

要求:按照上图,1 构建树;2 递归算法输出树转二叉树的结点与深度;3 递归算法输出原树的结点与深度~

思路:

  1. 构建树的核心思想是队列,与孩子表示法的构建思路很类似,区别在于这一步:addChild(currentNode, childNode); 孩子兄弟法不能将孩子结点直接挂在原结点的后面,而是需要根据左孩子右兄弟的原则转换为二叉树存储~思维导图如下,与之前孩子表示法的区别已经涂蓝了~
  2. 输出和求树高用了递归的方式,效率偏低,但是代码会简洁一些~
​代码(键入小树) 

备注:

过了很久再回顾这段代码,我意识到其中的数据结构似乎也存在一些问题。用vector模拟指针是为了什么.,总之看着有一点不符合题意。😣

不过,既然这段代码能够正常运行,我还是决定将它保留下来。毕竟,在当时可能是在我不断的催促下,GPT老师费了不少心思才完成了这么多代码。这段代码也算是我们共同努力的见证,就让它作为一个纪念,记录下那段时光吧。😉

或许我还要回来学习这段代码,因为我也不是一眼就能看懂它,下一段代码(预置小树)实现可能要比这一段代码直观一些~😊

#include <iostream>    //C++标准库中的头文件,提供了输入输出流的功能。在代码中使用std::cout和std::cin进行输出和输入操作。
#include <vector>    //这是C++标准库中的头文件,它包含了std::vector模板类,提供了动态数组的功能。在这段代码中,std::vector<CTNode*>被用来存储和管理树的子节点和节点队列。

// 定义树的结点结构
struct CSNode {
    char data;      // 用于存储结点的数据
    std::vector<CSNode*> firstchild;    // 孩子指针
    std::vector<CSNode*> nextsibling;    // 兄弟指针
};

// 定义树的结构
struct CSTree {
    CSNode* root;  // 根节点指针
};

// 创建新的树结点
CSNode* createNode(char data) {     //接受一个char类型的参数data,用于传输树结点的数据
    CSNode* newNode = new CSNode();     //创建新的树结点newnode
    newNode->data = data;       //将data的数据赋值给newnode
    return newNode;     //返回newnode的结点指针
}

// 添加孩子节点
void addChild(CSNode* parent, CSNode* child) {      //接受两个参数:parent代表父节点的指针,child代表孩子节点的指针。
    parent->firstchild.push_back(child);     //调用 std::vector 类的 push_back() 方法,将 child 添加到 parent->firstchild 的末尾。
}

// 添加兄弟节点
void addSibling(CSNode* parent, CSNode* sibling) {      //接受两个参数:parent代表父节点的指针,sibling代表兄弟的指针。
    parent->nextsibling.push_back(sibling);     //调用 std::vector 类的 push_back() 方法,将 sibling 添加到 parent->nextsibling 的末尾。
}

// 初始化树
CSTree* initTree() {
    CSTree* tree = new CSTree();     //创建新的树tree
    tree->root = nullptr;     //树的根节点指针设为空
    return tree;     //返回树的指针
}

// 构建树
void buildTree(CSTree* tree) {     //接受树的结构体CSTree*的指针tree,用于增加树结点的数据
    //用户键入树的结点数据data
    char data;
    std::cout << "输入根节点数据: ";
    std::cin >> data;

    // 创建根节点
    CSNode* root = createNode(data);    //创建根结点,并将用户输入的data赋值到根节点
    tree->root = root;      //根节点的指针赋值给tree的root成员变量,将根节点连接到树中

    std::vector<CSNode*> nodeQueue;  // 创建辅助队列nodeQueue,其数据类型为树的结点类型CSNode,用于辅助构建树
    nodeQueue.push_back(root);      //调用 std::vector 类的 push_back() 方法,将根节点的指针root添加到结点队列nodeQueue,作为开始构建树的起点

    while (!nodeQueue.empty()) {    //当辅助队列nodeQueue的结点不为空时,执行以下循环
        CSNode* currentNode = nodeQueue.front();    //从辅助队列nodeQueue中获取队首元素的值。nodeQueue.front()获取结点队列的第一个结点的指针,并将其赋值给变量currentNode
        nodeQueue.erase(nodeQueue.begin());     //辅助队列nodeQueue队首元素出队。这行代码使用erase()函数从结点队列中移除第一个结点。begin()函数返回队列的起始迭代器,它指向队列的第一个元素

        //用户键入树的当前结点data赋值到辅助队列的结点currentNode,并键入孩子结点数量childCount
        int childCount;
        std::cout << "输入节点 " << currentNode->data << " 的子节点数量: ";
        std::cin >> childCount;

        CSNode* prevChild = nullptr;    //在构建树的过程中,用于保存上一个添加的孩子节点的指针prevChild。

        //当用户键入的子结点个数<孩子结点数量childCount时,执行以下循环
        for (int i = 0; i < childCount; i++) {
            //用户键入树的孩子结点数据childData
            char childData;
            std::cout << "输入子节点 " << i + 1 << " 的数据: ";
            std::cin >> childData;

            // 创建孩子结点
            CSNode* childNode = createNode(childData);

            if(prevChild == nullptr){
                addChild(currentNode, childNode);   //当 prevChild 指向null时,表示当前节点是前一个节点的孩子节点。
            }else{
                addSibling(prevChild, childNode);   //当 prevChild 指向结点时,表示当前节点是前一个节点的右兄弟节点。
            }
            
            prevChild = childNode;    // 将孩子结点childNode赋值为prevChild,用于判断下一个结点的输入
            nodeQueue.push_back(childNode);     // 将孩子结点childNode加入辅助队列nodeQueue,在下一轮循环中作为父结点构建其孩子链表
        }
    }
}

//递归输出树的结构
void printTreeWithDepth(CSNode* node, int depth){
    if(node == nullptr)
        return;

    std::cout << "树结点: " << node->data << " 深度: " << depth << std::endl;

    // 递归打印左子树和右兄弟
    for(CSNode* child : node->firstchild){
        printTreeWithDepth(child,depth = depth + 1);
    }
    for(CSNode* sibling : node->nextsibling){
        printTreeWithDepth(sibling,depth);
    }
}

// 获取输出二叉树的结构
void printBinaryTreeWithDepth(CSNode* node, int depth) {
    if(node == nullptr)
        return;

    std::cout << "二叉树结点: " << node->data << " 深度: " << depth << std::endl;

    // 递归打印二叉树
    for(CSNode* child : node->firstchild){
        printBinaryTreeWithDepth(child,depth = depth + 1);
    }
    for(CSNode* sibling : node->nextsibling){
        printBinaryTreeWithDepth(sibling,depth =  depth + 1);
    }
}

// 获取树的高度
int getHeight(CSNode* node){
    if(node == nullptr)
        return 0;

    int maxHeight = 0;

    for(CSNode* child : node->firstchild){
        int height = getHeight(child);
        maxHeight = std::max(maxHeight, height);
    }

    for(CSNode* sibiling : node->nextsibling){
        int height = getHeight(sibiling);
        maxHeight = std::max(maxHeight, height);
    }

    return maxHeight + 1;
}

int main() {
    CSTree* tree = initTree();  // 初始化树

    buildTree(tree);  // 构建树

    std::cout << std::endl;
    printTreeWithDepth(tree->root,0);  // 输出树的结点

    std::cout << std::endl;
    printBinaryTreeWithDepth(tree->root,0);  // 输出二叉树的结点

    std::cout << std::endl;
    int height = getHeight(tree->root);  // 输出二叉树的高度
    std::cout << "二叉树的高度:" << height <<std::endl;

    delete tree;  // 释放内存

    return 0;
}

运行的效果如下图所示:

备注:注意树的判定式if(prevChild == nullptr),prevChild作为指针判定下一个结点应该是孩子结点或是兄弟结点,根据口诀“左孩子右兄弟”,这里手动模拟一下构建树的流程~

第一趟,用户键入根结点R,队列:[R]~

1) 树:null; 队首currentNode:R出队并记录;用户键入3个子结点A、B、C,进入孩子结点循环~
       R

2) 上一个孩子节点prevChild 指向null,childNode孩子结点 A接入 currentNode当前结点 R的左孩子指针,表示为R的孩子~树的结构如下:
       R
      /  
     A 
    上一个孩子结点prevChild指向结点A,结点A入队,队列:[A];

3) 上一个孩子节点prevChild 指向结点A,不为空,因此childNode孩子结点 B接入 currentNode当前结点 A的右孩子指针,表示为A的兄弟~树的结构如下:
       R
      /      
     A        
      \        
       B 
    上一个孩子结点prevChild指向结点B,结点B入队,队列:[A,B];
4) 上一个孩子节点prevChild 指向结点B,不为空,因此childNode孩子结点 C接入 currentNode当前结点 B的右孩子指针,表示为B的兄弟~树的结构如下:
       R
      /      
     A        
      \        
       B 
        \        
         C 
    上一个孩子结点prevChild指向结点C,结点C入队,队列:[A,B, C];
5)用户键入的子结点个数=孩子结点数量childCount; 本轮孩子结点循环结束~


第二趟,队首currentNode:A出队并记录,用户键入结点A的2个子结点D、E,进入孩子结点循环~

1) 上一个孩子节点prevChild 指向null[代码重置],childNode孩子结点 D接入 currentNode当前结点 A的左孩子指针,表示为A的孩子~树的结构如下:
       R
      /      
     A        
    / \        
   D   B 
        \        
         C 
    上一个孩子结点prevChild指向结点D,结点D入队,队列:[B, C,D];
2) 上一个孩子节点prevChild 指向结点D,childNode孩子结点 E接入 currentNode当前结点 D的右孩子指针,表示为D的兄弟~树的结构如下:
       R
      /      
     A        
    / \        
   D   B 
    \   \        
     E   C 
    上一个孩子结点prevChild指向结点E,结点E入队,队列:[B, C,D,E];

第三趟,队首currentNode:B出队并记录,用户键入结点B的子结点为0,不会进入孩子结点循环~树的结构与第二趟相同,队列:[C,D,E];

第四趟,队首currentNode:C出队并记录,用户键入结点C的1个子结点F,进入孩子结点循环~

1) 上一个孩子节点prevChild 指向null[代码重置],childNode孩子结点 F接入 currentNode当前结点 C的左孩子指针,表示为C的孩子~树的结构如下:
       R
      /      
     A        
    / \        
   D   B 
    \   \        
     E   C 
        /
       F
    上一个孩子结点prevChild指向结点F,结点F入队,队列:[D,E,F];

第五~六趟,队首currentNode:D、E出队并记录,用户键入结点D、E的子结点为0,不会进入孩子结点循环~树的结构与第四趟相同,队列:[F];


第七趟,队首currentNode:E出队并记录,用户键入结点C的3个子结点G、H、K,进入孩子结点循环,过程略,树的结构如下~
       R
      /      
     A        
    / \        
   D   B 
    \   \        
     E   C 
        /
       F
      /
     G
      \
       H
        \
         K
    上一个孩子结点prevChild指向结点K,结点K入队,队列:[G,H,K];

第八~十趟,队首currentNode:G,H,K出队并记录,用户键入结点G,H,K的子结点为0,不会进入孩子结点循环~树的结构与第七趟相同,队列为空,退出循环~
代码(预置小树)   

将三叉树转换为二叉树时,我们遵循'左孩子-右兄弟'的原则进行转换。然而,在进行遍历操作时,由于三叉树和二叉树的节点结构并不兼容,遍历的时候我用了两个队列完成代码,其中有一个队列做了复读机...

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

// 定义三叉树节点类
class TritTreeNode {
private:
	char data;
	TritTreeNode* first, * second, * third;
	friend class TritTree;
	friend class CSTree;
public:
	TritTreeNode() : data(0), first(nullptr), second(nullptr), third(nullptr) {}				// 默认构造函数
	TritTreeNode(char data) : data(data), first(nullptr), second(nullptr), third(nullptr) {}	// 带参数的构造函数
	~TritTreeNode() {}																		// 析构函数
};

// 定义三叉树类
class TritTree {
private:
	TritTreeNode* root;
	friend class CSTree;
public:
	TritTree() : root(nullptr) {}	// 默认构造函数
	~TritTree() {}					// 析构函数
	bool CreateTree();				// 预置一个小树用于测试
	void PrintTree() const;			// 打印树的信息
};

// 定义二叉树节点类
class CSNode {
private:
	char data;							 // 节点数据
	CSNode* firstchild, * nextsibling;	 // 指向孩子节点和兄弟节点的指针
	friend class CSTree;			     // 声明CSTree类为友元,以便访问私有成员
public:
	CSNode() : data(0), firstchild(nullptr), nextsibling(nullptr) {}				// 默认构造函数
	CSNode(char data) : data(data), firstchild(nullptr), nextsibling(nullptr) {}	// 带参数的构造函数
	~CSNode() {}																	// 析构函数
};

// 定义二叉树类
class CSTree {
public:
	CSNode* biroot;	// 根节点指针
public:
	CSTree() : biroot(nullptr) {}				// 默认构造函数
	~CSTree() {}							// 析构函数
	bool TransferTree(TritTree* tree);		// 预置一个小树用于测试
	void PrintTree() const;					// 打印树的信息
};

// 创建小树
bool TritTree::CreateTree() {
	root = new TritTreeNode('R');
	root->first = new TritTreeNode('A');
	root->second = new TritTreeNode('B');
	root->third = new TritTreeNode('C');
	root->first->first = new TritTreeNode('D');
	root->first->second = new TritTreeNode('E');
	root->third->first = new TritTreeNode('F');
	root->third->first->first = new TritTreeNode('G');
	root->third->first->second = new TritTreeNode('H');
	root->third->first->third = new TritTreeNode('K');

	return true;
}

// 打印二叉树
void TritTree::PrintTree() const {
	queue<TritTreeNode*> q;
	q.push(root);
	int depth = 1;				  // 根节点的深度为1  
	while (!q.empty()) {
		int levelSize = q.size(); // 当前层的节点数  
		for (int i = 0; i < levelSize; ++i) {
			TritTreeNode* node = q.front();
			q.pop();
			cout << "三叉树节点数据: " << node->data << ", ";
			cout << "三叉树节点深度: " << depth << endl;
			if (node->first != nullptr) {
				q.push(node->first);
			}
			if (node->second != nullptr) {
				q.push(node->second);
			}
			if (node->third != nullptr) {
				q.push(node->third);
			}
		}
		depth++;				   // 完成一层的遍历后,深度加1  
	}
}

// 三叉树转二叉树
bool CSTree::TransferTree(TritTree* tree) {
	if (tree == nullptr || tree->root == nullptr) return false;

	biroot = new CSNode(tree->root->data); // 二叉树根节点  
	CSNode* binode = biroot;			   // 用于遍历二叉树的指针  

	queue<TritTreeNode*> q1;				   // 用于遍历三叉树的队列
	queue<CSNode*> q2;						   // 用于遍历二叉树的队列
	q1.push(tree->root);					   // 根节点入队
	q2.push(biroot);						   // 根节点入队

	while (!q1.empty()) {
		TritTreeNode* tritnode = q1.front();
		q1.pop();
		if (!q2.empty()) {
			binode = q2.front();
			q2.pop();
		}
		else {
			break;
		}
		
		CSNode* lastChild = nullptr;	   // 用于跟踪当前三叉树节点在二叉树中的最后一个子节点  

		if (tritnode->first) {
			if (lastChild == nullptr) {
				binode->firstchild = new CSNode(tritnode->first->data);
				q2.push(binode->firstchild);
				lastChild = binode->firstchild;
			}
			else {
				lastChild->nextsibling = new CSNode(tritnode->first->data);
				q2.push(binode->nextsibling);
				lastChild = lastChild->nextsibling;
			}
			q1.push(tritnode->first);
		}

		if (tritnode->second) {
			if (lastChild == nullptr) {
				binode->firstchild = new CSNode(tritnode->second->data);
				q2.push(binode->firstchild);
				lastChild = binode->firstchild;
			}
			else {
				lastChild->nextsibling = new CSNode(tritnode->second->data);
				q2.push(lastChild->nextsibling);
				lastChild = lastChild->nextsibling;
			}
			q1.push(tritnode->second);
		}

		if (tritnode->third) {
			if (lastChild == nullptr) {
				binode->firstchild = new CSNode(tritnode->third->data);
				q2.push(binode->firstchild);
				lastChild = binode->firstchild;
			}
			else {
				lastChild->nextsibling = new CSNode(tritnode->third->data);
				q2.push(lastChild->nextsibling);
			}
			q1.push(tritnode->third);
		}
	}

	return true;
}

// 打印三叉树
void CSTree::PrintTree() const {
	queue<CSNode*> q;
	q.push(biroot);
	int depth = 1;				  // 根节点的深度为1  
	while (!q.empty()) {
		int levelSize = q.size(); // 当前层的节点数  
		for (int i = 0; i < levelSize; ++i) {
			CSNode* node = q.front();
			q.pop();
			cout << "二叉树节点数据: " << node->data << ", ";
			cout << "二叉树节点深度: " << depth << endl;
			if (node->firstchild != nullptr) {
				q.push(node->firstchild);
			}
			if (node->nextsibling != nullptr) {
				q.push(node->nextsibling);
			}
		}
		depth++;				   // 完成一层的遍历后,深度加1  
	}		
}

int main() {
	cout << "准备构建小树:" << endl;
	TritTree newtree;                    // 创建一个新的树对象    
	newtree.CreateTree();                // 添加节点到树中    
	newtree.PrintTree();                 // 打印树的信息    
	cout << "——手动分割线——" << endl << endl;

	cout << "准备转换小树:" << endl;
	CSTree bitree;					     // 创建一个新的树对象	
	bitree.TransferTree(&newtree);		 // 转换三叉树到二叉树
	bitree.PrintTree();				     // 打印树的信息
	cout << "——手动分割线——" << endl << endl;

	return 0;
}

执行结果如下:


二叉树

二叉树的概念

定义

(1)每个结点至多只能有两棵子树(即二叉树中不存在度大于2的结点),可以为空树;

(2)二叉树的子树有左右之分,其次序不能任意颠倒。

特殊的二叉树

(1)满二叉树:高度为h,且含有2^h - 1个结点的的二叉树,即树中的每层都含有最多的结点。

(2)完全二叉树:高度为h,有n个结点的二叉树,当且仅当其每个结点都与高度为h的满二叉树中编号为1~n的结点一一对应时,称为完全二叉树。

(3)二叉排序树:左子树上所有结点的关键字均小于根结点的关键字;右子树上的所有结点的关键字均大于根节点的关键字;左子树和右子树又各是一棵二叉排序树。

(4)平衡二叉树:树上任意一个结点的左子树和右子树的深度之差不超过1。

二叉树的性质

(1)普通二叉树

  • 结点与结点:非空二叉树上,叶结点数 = 度为2的结点数 + 1,即 n0 = n2 + 1;

        //  二叉树的结点总数=n0+n1+n2,二叉树的分支或边总数=n1+2n2;树的结点总数=树的分支总数+1(根节点),则n0+n1+n2=n1+2n2+1,得n0=n2+1。

        //  另,在完全二叉树,最多只会有1个是度为1的结点,n1的取值范围为0或1。

  • 结点与度:非空二叉树上,在第 k 层上结点数 ≤ 2^(k-1);
  • 结点与高:高度为h的二叉树 结点数 n ≤ 2^h -1;

        //  以上性质均与树的性质相互对照。

(2)完全二叉树

  • 结点与编号:
    • i > 1时,结点 i 的双亲编号为 ⌊ i / 2 ⌋("⌊⌋"表示向上取整);
    • 2i ≤ n时,结点 i 的左孩子编号为 2i , 否则无左孩子;
    • 2i + 1 ≤ n时,结点 i 右孩子编号为2i+1,否则无右孩子;
  • 结点与高度:
    • 结点 i 所在层次(深度为)⌊ log i ⌋ + 1("log"无底数时默认以2为底数);
    • 具有 n 个结点的完全二叉树高度为 ⌈ log (n+1) ⌉ 或⌊ log n ⌋ + 1。

                  //  以上性质均与树“结点与高”性质相互对照,完全二叉树的树高 2^(h-1) -1 <n ≤ 2^h -1 ,或 2^(h-1) ≤ n < 2^h -1~

二叉树的存储结构

(1)顺序存储结构

  • 定义:用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。即将完全二叉树上编号为 i 的结点元素存储在一维数组下边为 i-1 的分量中。
  • 适用:依据二叉树的性质,完全二叉树和满二叉树采用顺序存储比较合适,逻辑直观,且节省存储空间。    //所以顺序存储应该不是重点
  • 结构:顺序表即可,增删改查操作可见👉线性表[顺序表+链表]
#define MaxSize 16

typedef struct {
    ElemType data[MaxSize];  // 存储二叉树的数组
    int length;     // 树的当前长度
} BiTree;

(2)链式存储结构

  • 定义:采用链式存储结构,用链表结点来存储二叉树中的每个结点。
  • 适用:一般都采用二叉树的性质存储。
  • 结构:结点结构通常包括若干数据域和指针域,二叉链表中至少包含3个域:数据域、左指针域、右指针域。
typedef struct BiTNode{
    ElemType data;    //数据域;
    struct BiTNode *lchild, *rchild;    //左、右孩子指针;
}BiTNode,*BiTree;

二叉树的遍历

先序、中序、后序遍历的定义与手动推算

二叉树的遍历:是指按某条搜索路径访问树中的每个结点,使得每个结点均被访问一次,而且仅被访问一次。常见的遍历次序有先序、中序和后序三种遍历算法~目的是使树这种非线性结构最后能以线性的方式输出~

  • 先序遍历:如果树不为空,则依次访问树的根节点、左子树、右子树 ;
  • 中序遍历:如果树不为空,则依次访问树的左子树、根节点、右子树 ;
  • 后序遍历:如果树不为空,则依次访问树的左子树、右子树、根节点。

举栗:在这里简单复现一下 机智的王道咸鱼老师 教的两种树的手算法~

递归遍历算法思想概要: 

  • 递归切分法(非官方称呼):适用于程序递归算法——
    • 先序遍历:如果树非空,访问根节点,调用递归访问左子树,调用递归访问右子树,完结撒花~
    • 中序遍历:如果树非空,调用递归访问左子树,访问根节点,调用递归访问右子树,完结撒花~
    • 后序遍历:如果树非空,访问根节点,调用递归访问左子树,调用递归访问右子树,完结撒花~

递归遍历手动推算及案例: 

  • 递归切分法(非官方称呼):手动推算版本,个人就觉得有点绕,大致就是将树以结点为单位,从顶至底无限切分,然后以遍历顺序开始访问~
  • 以配图为例说明手动推算步骤——
    • 将树切分为根(1)、左子树(2、4、6)、右子树(3、5);
    • 将左子树(2、4、6)看作整体,继续细分,又可以得到局部根结点(2)与右子树(4、6),其左子树为空;
    • 将左子树(4、6)看作整体,继续细分,又可以得到局部根结点(4)与左子树(6),其右子树为空;
    • 将右子树(3、5)看作整体继续细分,又可以得到局部根结点(3)与右子树(5),其左子树为空;
  • 先序遍历:按照根、左、右的顺序,访问
    • →1(总树的根结点)
    • →2(1作为根结点,左子树的局部根结点2)
    • →4(2作为局部根结点无左子树,则访问右子树的局部根结点4)
    • →6(4作为局部根结点相连的左子树,至此总根的左子树访问完成)
    • →3(1作为根结点,右子树的局部根结点3)
    • →5(3作为局部根结点无左子树,访问右子树)
  • 中序遍历:按照左、根、右的顺序,访问
    • →2(1作为根结点的左子树,局部根结点2,无左子树则访问根结点2)
    • →6(2作为局部根结点无左子树,其右子树4作为局部根结点,具有左子树为6)
    • →4(4作为局部根结点无右子树,至此总根结点1左侧访问完成)
    • →1(总根结点1)
    • →3(1作为局部根结点无左子树,局部根结点3,无左子树则访问根结点3)
    • →5(3作为局部根结点,左子树与根访问完成,则访问右子树)
  • 后序遍历:按照左、右、根的顺序,访问
    • →6(跳过根结点1-及其左子树的局部根结点2-及其右子树的局部根结点4)
    • →4(6属于左子树,无右兄弟,访问父结点4)
    • →2(4属于右子树,访问父结点2)
    • →5(2属于左子树,有右兄弟3,但3有子树5,则跳过局部根结点3先访问5)
    • →3(5属于右子树,访问父结点3)
    • →1(3属于右子树,访问父结点1)

 非递归遍历算法思想概要: 

  • 环绕计数法(非官方称呼):适用于程序非递归算法——
    • 先序|中序,将指针的位置赋给树的根,树不为空且指针不为空时,循环:
      • 如果指针指向 非空结点——
        • 若是先序遍历,此处访问结点~
        • 指针指向的结点入栈~
        • 指针依次访问结点指向的左孩子,进行下一轮循环~
      • 如果指针指向 空结点——
        • 指针退回父结点的位置(指针指向栈顶元素)~
          • 指针指向结点的右孩子~
          • 若是中序遍历,此处访问结点~
          • 栈顶元素出栈,进行下一轮循环~
    • 后序,将指针的赋给树的根,树不为空且指针不为空时,循环:
      • 如果指针指向 非空结点——
        • 指针指向的结点入栈~
        • 指针依次访问结点指向的左孩子~
      • 如果指针指向 空结点——
        • 指针退回父结点的位置(指针指向栈顶元素)~
        • 如果该结点有未被记录的右孩子~
          • 访问结点的右孩子,进行下一轮循环~
        • 如果该结点没有右孩子,或右孩子已被记录(说明当前节点及其子树已经遍历完成)~
          • 栈顶元素访问并出栈~
          • 记录指针当前的位置(作为下一个待处理节点的父结点)~
          • 指针置空,进行下一轮循环~

 非递归遍历手动推算及案例: 

  • 环绕计数法(非官方称呼):手动推算理解版本——
    • 先序遍历记录第1次经过的结点,中序遍历记录第2次经过的结点,后序遍历记录第3次经过的结点~
    • 从根结点的上方开始沿着树的轮廓开始逆时针画线~
    • 如上图,将树的分支结点与叶子结点均补全为度为2的分支结点~
  • 以配图为例说明手动推算步骤——
  • 先序遍历:按照根、左、右的顺序,访问
    • →1(父结点null经过1次)
    • →2(父结点1经过1次)
    • →4(父结点2经过1次)
    • →6(父结点4经过1次)
    • →3(父结点1经过1次)
    • →5(父结点3经过1次)
  • 中序遍历:按照左、根、右的顺序,访问
    • →2(父结点1经过1次,2的左孩子null结点经过1次)
    • →6(父结点4经过1次,6的左孩子null结点经过1次)
    • →4(父结点2经过1次,4的左孩子5结点经过1次)
    • →1(父结点null经过1次,1的左孩子2结点经过1次)
    • →3(父结点1经过1次,3的左孩子null结点经过1次)
    • →5(父结点3经过1次,5的左孩子null结点经过1次)
  • 后序遍历:按照左、右、根的顺序,访问
    • →6(父结点1经过1次,左孩子null经过1次、右孩子null经过1次)
    • →4(父结点2经过1次,左孩子6经过1次、右孩子null经过1次)
    • →2(父结点1经过1次,左孩子null经过1次、右孩子4经过1次)
    • →5(父结点3经过1次,左孩子null经过1次、右孩子null经过1次)
    • →3(父结点1经过1次,左孩子null经过1次、右孩子5经过1次)
    • →1(父结点null经过1次,左孩子2经过1次、右孩子3经过1次)
先序、中序、后序遍历的核心代码

要求:复现上一张图中的树,篇幅限制,代码注释见算法思想概要~

#include <iostream>
#include <stack>
#include <queue>

typedef struct BiTNode {
    int data;
    struct BiTNode* lchild, * rchild;
} BiTNode, * BiTree;

void visit(int data) {
    std::cout << data << " ";
}

void PreOrder(BiTree T) {
    if (T != NULL) {
        visit(T->data);
        PreOrder(T->lchild);
        PreOrder(T->rchild);
    }
}

void InOrder(BiTree T) {
    if (T != NULL) {
        InOrder(T->lchild);
        visit(T->data);
        InOrder(T->rchild);
    }
}

void PostOrder(BiTree T) {
    if (T != NULL) {
        PostOrder(T->lchild);
        PostOrder(T->rchild);
        visit(T->data);
    }
}

void PreOrder2(BiTree T) {
    std::stack<BiTree> S;
    BiTree p = T;

    while (p || !S.empty()) {
        if (p) {
            visit(p->data);
            S.push(p);
            p = p->lchild;
        }
        else {
            p = S.top();
            S.pop();
            p = p->rchild;
        }
    }
}

void InOrder2(BiTree T) {
    std::stack<BiTree> S;
    BiTree p = T;

    while (p || !S.empty()) {
        if (p) {
            S.push(p);
            p = p->lchild;
        }
        else {
            p = S.top();
            S.pop();
            visit(p->data);
            p = p->rchild;
        }
    }
}

void PostOrder2(BiTree T) {
    std::stack<BiTree> S;
    BiTree p = T;
    BiTree r = NULL;

    while (p || !S.empty()) {
        if (p) {
            S.push(p);
            p = p->lchild;
        }
        else {
            p = S.top();
            if (p->rchild && p->rchild != r)
                p = p->rchild;
            else {
                S.pop();
                visit(p->data);
                r = p;
                p = NULL;
            }
        }
    }
}

// 构建树
void buildTree(BiTree* tree) {
    int data;
    std::cout << "输入根节点数据: ";
    std::cin >> data;

    BiTNode* root = new BiTNode;
    root->data = data;

    std::queue<BiTNode*> nodeQueue;
    nodeQueue.push(root);

    while (!nodeQueue.empty()) {
        BiTNode* currentNode = nodeQueue.front();
        nodeQueue.pop();

        int childCount;
        std::cout << "输入节点 " << currentNode->data << " 的子节点数量: ";
        std::cin >> childCount;

        switch (childCount) {
        case 2:
            {
                for (int i = 0; i < 2; ++i) {
                    int childData;
                    std::cout << "输入第 " << i + 1 << " 个子节点的数据: ";
                    std::cin >> childData;

                    char childType;
                    std::cout << "输入第 " << i + 1 << " 个子节点是左孩子还是右孩子(L/R): ";
                    std::cin >> childType;

                    BiTNode* childNode = new BiTNode;
                    childNode->data = childData;
                    childNode->lchild = NULL;
                    childNode->rchild = NULL;

                    if (childType == 'L') {
                        currentNode->lchild = childNode;
                    } else if (childType == 'R') {
                        currentNode->rchild = childNode;
                    }

                    nodeQueue.push(childNode);
                }
            }
            break;
        case 1:
            {
                int childData;
                std::cout << "输入子节点的数据: ";
                std::cin >> childData;

                char childType;
                std::cout << "输入子节点是左孩子还是右孩子(L/R): ";
                std::cin >> childType;

                BiTNode* childNode = new BiTNode;
                childNode->data = childData;
                childNode->lchild = NULL;
                childNode->rchild = NULL;

                if (childType == 'L') {
                    currentNode->lchild = childNode;
                } else if (childType == 'R') {
                    currentNode->rchild = childNode;
                }

                nodeQueue.push(childNode);
            }
            break;
        case 0:
            // 跳过判定,不添加子节点
            break;
        }
    }

    *tree = root;
}

// 释放树的内存
void releaseTree(BiTree tree) {
    if (tree == NULL) {
        return;
    }

    releaseTree(tree->lchild);
    releaseTree(tree->rchild);
    delete tree;
}

int main() {
    BiTree tree = nullptr;

    std::cout << "层次遍历构建树:\n";
    buildTree(&tree);

    std::cout << "递归先序遍历: ";
    PreOrder(tree);

    std::cout << "\n递归中序遍历: ";
    InOrder(tree);

    std::cout << "\n递归后序遍历: ";
    PostOrder(tree);

    std::cout << "\n非递归先序遍历: ";
    PreOrder2(tree);

    std::cout << "\n非递归中序遍历: ";
    InOrder2(tree);

    std::cout << "\n非递归后序遍历: ";
    PostOrder2(tree);

    releaseTree(tree);

    return 0;
}

代码运行结果如下~


结语

博文到此结束,写得模糊或者有误之处,欢迎小伙伴留言讨论与批评,包括但不限于以下内容~😶‍🌫️

  • 小白视角:这段代码不理解,博主需要增加语法注释、逻辑注释、配图或者动图说明~
  • 大佬视角:这写的是什么玩意儿?!C++是这么写的嘛,老子有意见!
  • 路人视角:随便翻到,与我无关。确实挺长,写得不容易,不如默默给个赞支持一下博主?
  • 福利视角:直接翻到最后,博文不重要,记得经常发红包就可以了,好人一生平安,懂?!

同系列的博文:🌸数据结构_梅头脑_的博客-CSDN博客

同博主的博文:🌸随笔03 笔记整理-CSDN博客

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值